Skip to main content
Log in

Isoprene production in Synechocystis under alkaline and saline growth conditions

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Photosynthesis for the generation of isoprene in cyanobacteria was demonstrated with Synechocystis, entailing a process where a single host microorganism acts as both photocatalyst and processor, photosynthesizing and emitting isoprene hydrocarbons. A practical aspect of the commercial exploitation of this process in mass culture is the need to prevent invading microorganisms that might cause a culture to crash, and to provide an alternative to freshwater in scale-up applications. Growth media poised at alkaline pH are desirable in this respect, as high pH might favor the growth of the cyanobacteria, while at the same time discouraging the growth of invading predatory microbes and grazers. In addition, demonstration of salinity tolerance would enable the use of seawater for cyanobacteria cultivations. However, it is not known if Synechocystis growth and the isoprene-producing metabolism can be retained under such theoretically non-physiological conditions. We applied the gaseous/aqueous two-phase photobioreactor system with Synechocystis transformed with the isoprene synthase gene (SkIspS) of Pueraria montana (kudzu). Rates of growth and isoprene production are reported under control, and a combination of alkalinity and salinity conditions. The results showed that alkalinity and salinity do not exert a negative effect on either cell growth or isoprene production rate and yield in Synechocystis. The work points to a practical approach in the design of cyanobacterial growth media for applications in commercial scale-up and isoprene production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bentley FK, Melis A (2012) Diffusion-based process for carbon dioxide uptake and isoprene emission in gaseous/aqueous two-phase photobioreactors by photosynthetic microorganisms. Biotechnol Bioeng 109:100–109

    Article  CAS  PubMed  Google Scholar 

  • Bentley FK, Zubriggen A, Melis A (2014) Heterologous expression of the mevalonic acid pathway in cyanobacteria enhances endogenous carbon partitioning to isoprene. Mol Plant 7:71–86

    Article  CAS  PubMed  Google Scholar 

  • Bjorkman O, Demmig B (1987) Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77-K among vascular plants of diverse origins. Planta 170:489–504

    Article  CAS  PubMed  Google Scholar 

  • Cooney MJ, Young G, Pate R (2011) Bio-oil from photosynthetic microalgae: case study. Bioresour Technol 102:166–177

    Article  CAS  PubMed  Google Scholar 

  • Dismukes GC, Carrieri D, Bennette N, Ananyev GM, Posewitz MC (2008) Aquatic phototrophs: efficient alternatives to land-based crops for biofuels. Curr Opin Biotechnol 19:235–240

    Article  CAS  PubMed  Google Scholar 

  • Glazer AN, Melis A (1987) Photochemical reaction centers: structure, organization, and function. Annu Rev Plant Physiol 38:11–45

    Article  CAS  Google Scholar 

  • Guenther A, Karl T, Harley P, Wiedinmyer C, Palmer PI, Geron C (2006) Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature. Atmos Chem Phys 6:3181–3210

    Article  CAS  Google Scholar 

  • Hagemann M (2011) Molecular biology of cyanobacterial salt acclimation. FEMS Microbiol Rev 35:87–123

    Article  CAS  PubMed  Google Scholar 

  • Herrera A, Boussiba S, Napoleone V, Hohlberg A (1989) Recovery of C-phycocyanin from the cyanobacterium Spirulina maxima. J Appl Phycol 1:325–331

    Article  Google Scholar 

  • Ley AC, Mauzerall D (1982) Absolute absorption cross-section of photosystem-II and the minimum quantum requirement for photosynthesis in Chlorella vulgaris. Biochim Biophys Acta 680:95–106

    Article  CAS  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148:350–382

    Article  CAS  Google Scholar 

  • Lichtenthaler HK (2007) Biosynthesis, accumulation and emission of carotenoids, α-tocopherol, plastoquinone, and isoprene in leaves under high photosynthetic irradiance. Photosynth Res 92:163–179

    Article  CAS  PubMed  Google Scholar 

  • Lichtenthaler HK (2010) Biosynthesis and emission of isoprene, methylbutenol and other volatile plant isoprenoids. In: Herrmann A (ed) The Chemistry and Biology of Volatiles. John Wiley & Sons, West Sussex, UK, pp 11–47

    Chapter  Google Scholar 

  • Lindberg P, Park S, Melis A (2010) Engineering a platform for photosynthetic isoprene production in cyanobacteria, using Synechocystis as the model organism. Metabol Eng 12:70–79

    Article  CAS  Google Scholar 

  • Manodori M, Melis A (1984) Photochemical apparatus organization in Anacystis nidulans (Cyanophyceae). Plant Physiol 74:67–71

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McGinn PJ, Dickinson KE, Bhatti S, Frigon J-C, Guiot SR, O’Leary SJB (2011) Integration of microalgae cultivation with industrial waste remediation for biofuel and bioenergy production: opportunities and limitations. Photosynth Res 109:231–247

    Article  CAS  PubMed  Google Scholar 

  • Melis A (1989) Spectroscopic methods in photosynthesis: photosystem stoichiometry and chlorophyll antenna size. Philos Trans R Soc Lond B 323:397–409

    Article  CAS  Google Scholar 

  • Melis A (2012) Photosynthesis-to-Fuels: From sunlight to hydrogen, isoprene, and botryococcene production. Energy Environ Sci 5:5531–5539

    Article  CAS  Google Scholar 

  • Melis A (2013) Carbon partitioning in photosynthesis. Curr Opin Chem Biol 17:453–456

    Article  CAS  PubMed  Google Scholar 

  • Naus J, Melis A (1991) Changes of photosystem stoichiometry during cell growth in Dunaliella salina cultures. Plant Cell Physiol 32:569–575

    CAS  Google Scholar 

  • Pate R, Klise G, Wu B (2011) Resource demand implications for US algae biofuels production scale-up. Appl Energy 88:3377–3388

    Article  CAS  Google Scholar 

  • Parhad NM, Rao NU (1974) Effect of pH on survival of Escherichia coli. J Water Poll Control Fedn 46:980–986

    Google Scholar 

  • Pikuta EV, Hoover RB, Tang J (2007) Microbial extremophiles at the limits of life. Crit Rev Microbiol 33:183–209

    Article  CAS  PubMed  Google Scholar 

  • Pittman JK, Dean AP, Osundeko O (2011) The potential of sustainable algal biofuel production using wastewater resources. Bioresour Technol 102:17–25

    Article  CAS  PubMed  Google Scholar 

  • Schubert H, Hagemann M (1990) Salt effects on 77 K fluorescence and photosynthesis in the cyanobacterium Synechocystis sp. PCC 6803. FEMS Microbiol Lett 72:169–172

    Article  Google Scholar 

  • Sonoda M, Katoh H, Vermaas W, Schmetterer G, Ogawa T (1998) Photosynthetic electron transport involved in PxcA-dependent proton extrusion in Synechocystis sp strain PCC6803: effect of pxcA inactivation on CO2, HCO3 , and NO3 uptake. J Bacteriol 180:3799–3803

    PubMed Central  CAS  PubMed  Google Scholar 

  • Summerfield TC, Sherman LA (2008) Global transcriptional response of the alkali-tolerant cyanobacterium Synechocystsis sp. PCC 6803 to a pH 10 environment. Appl Environ Microbiol 74:5275–5284

    Article  Google Scholar 

  • Xiaomei LV, Haoming X, Hongwei Y (2012) Significantly enhanced production of isoprene by ordered coexpression of dxs, dxr, and idi in Escherichia coli. Appl Microbiol Technol 97:2357–2365

    Google Scholar 

  • Yang J, Xu M, Zhang X, Hu Q, Sommerfeld M, Chen Y (2011) Life-cycle analysis on biodiesel production from microalgae: water footprint and nutrients balance. Bioresour Technol 102:159–165

    Article  CAS  PubMed  Google Scholar 

  • Zurbriggen A, Kirst H, Melis A (2012) Isoprene production via the mevalonic acid pathway in Escherichia coli (Bacteria). BioEnergy Res 5:814–828

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastasios Melis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaves, J.E., Kirst, H. & Melis, A. Isoprene production in Synechocystis under alkaline and saline growth conditions. J Appl Phycol 27, 1089–1097 (2015). https://doi.org/10.1007/s10811-014-0395-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-014-0395-2

Keywords

Navigation