Skip to main content

Advertisement

Log in

Progress in inorganic cathode catalysts for electrochemical conversion of carbon dioxide into formate or formic acid

  • Review Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

As a greenhouse gas, carbon dioxide in the atmosphere is one of the key contributors to climate change. Many strategies have been proposed to address this issue, such as CO2 capture and sequestration (CCS) and CO2 utilization (CCU). Electroreduction of CO2 into useful fuels is proving to be a promising technology as it not only consumes CO2 but can also store the redundant electrical energy generated from renewable energy sources (e.g., solar, wind, geothermal, wave, etc.) as chemical energy in the produced chemicals. Among all of products from CO2 electroconversion, formic acid is one of the highest value-added chemicals, which is economically feasible for large-scale applications. This paper summarizes the work on inorganic cathode catalysts for the electrochemical reduction of CO2 to formic acid or formate. The reported metal and oxide cathode catalysts are discussed in detail according to their performance including current density, Faradaic efficiency, and working potentials. In addition, the effects of electrolyte, temperature, and pressure are also analyzed. The electroreduction of CO2 to formic acid or formate is still at an early stage with several key challenges that need to be addressed before commercialization. The major challenges and the future directions for developing new electrocatalysts for the reduction of CO2 to formic acid are discussed in this review.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Lim RJ, Xie M, Sk MA et al (2014) A review on the electrochemical reduction of CO2 in fuel cells, metal electrodes and molecular catalysts. Catal Today 233:169–180

    Article  CAS  Google Scholar 

  2. Global Greenhouse Gas Reference Network. http://www.esrl.noaa.gov/gmd/ccgg/trends/. Accessed 10 Mar 2017

  3. Le Quéré C, Andres RJ, Boden T et al (2012) The global carbon budget 1959–2011. Earth Syst Sci Data Discuss 5:1107–1157

    Article  Google Scholar 

  4. Le Quéré C, Moriarty R, Andrew RM et al (2015) Global carbon budget 2014. Earth Syst Sci Data 7:47–85

    Article  Google Scholar 

  5. Le Quéré C, Moriarty R, Andrew RM et al (2015) Global carbon budget 2015. Earth Syst Sci Data 7:349–396

    Article  Google Scholar 

  6. Ampelli C, Perathoner S, Centi G (2015) CO2 utilization: an enabling element to move to a resource-and energy-efficient chemical and fuel production. Philos Trans R Soc Lond A Math Phys Eng Sci 373:20140177

    Article  CAS  Google Scholar 

  7. Solomon S, Plattner G-K, Knutti R, Friedlingstein P (2009) Irreversible climate change due to carbon dioxide emissions. Proc Natl Acad Sci USA 106:1704–1709

    Article  CAS  Google Scholar 

  8. Agarwal AS, Zhai Y, Hill D, Sridhar N (2011) The electrochemical reduction of carbon dioxide to formate/formic acid: engineering and economic feasibility. ChemSusChem 4:1301–1310

    Article  CAS  Google Scholar 

  9. Aresta M (2010) Carbon dioxide as chemical feedstock. Wiley, Hoboken

    Book  Google Scholar 

  10. Berndt ME, Allen DE, Seyfried WE (1996) Reduction of CO2 during serpentinization of olivine at 300 C and 500 bar. Geology 24:351–354

    Article  CAS  Google Scholar 

  11. Centi G, Perathoner S (2009) Opportunities and prospects in the chemical recycling of carbon dioxide to fuels. Catal Today 148:191–205

    Article  CAS  Google Scholar 

  12. Wang W, Wang SP, Ma XB, Gong JL (2011) Recent advances in catalytic hydrogenation of carbon dioxide. Chem Soc Rev 40:3703–3727

    Article  CAS  Google Scholar 

  13. Varghese OK, Paulose M, LaTempa TJ, Grimes CA (2009) High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels. Nano Lett 9:731–737

    Article  CAS  Google Scholar 

  14. Roy SC, Varghese OK, Paulose M, Grimes CA (2010) Toward solar fuels: photocatalytic conversion of carbon dioxide to hydrocarbons. ACS Nano 4:1259–1278

    Article  CAS  Google Scholar 

  15. Sydney EB, Sturm W, de Carvalho JC et al (2010) Potential carbon dioxide fixation by industrially important microalgae. Bioresour Technol 101:5892–5896

    Article  CAS  Google Scholar 

  16. Wang B, Li YQ, Wu N, Lan CQ (2008) CO2 bio-mitigation using microalgae. Appl Microbiol Biotechnol 79:707–718

    Article  CAS  Google Scholar 

  17. Collombdunandsauthier MN, Deronzier A, Ziessel R (1994) Electrocatalytic reduction of carbon-dioxide with mono(bipyridine)carbonylruthenium complexes in solution or as polymeric thin-films. Inorg Chem 33:2961–2967

    Article  CAS  Google Scholar 

  18. Kuhl KP, Cave ER, Abram DN, Jaramillo TF (2012) New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ Sci 5:7050–7059

    Article  CAS  Google Scholar 

  19. Peterson AA, Abild-Pedersen F, Studt F, Rossmeisl J, Norskov JK (2010) How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ Sci 3:1311–1315

    Article  CAS  Google Scholar 

  20. Finn C, Schnittger S, Yellowlees LJ, Love JB (2012) Molecular approaches to the electrochemical reduction of carbon dioxide. Chem Commun (Camb) 48:1392–1399

    Article  CAS  Google Scholar 

  21. Qiao J, Liu Y, Hong F, Zhang J (2014) A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Chem Soc Rev 43:631–675

    Article  CAS  Google Scholar 

  22. Finn C, Schnittger S, Yellowlees LJ, Love JB (2012) Molecular approaches to the electrochemical reduction of carbon dioxide. Chem Commun 48:1392–1399

    Article  CAS  Google Scholar 

  23. Rice C, Ha S, Masel R, Waszczuk P, Wieckowski A, Barnard T (2002) Direct formic acid fuel cells. J Power Sources 111:83–89

    Article  CAS  Google Scholar 

  24. Zhu Y, Ha SY, Masel RI (2004) High power density direct formic acid fuel cells. J Power Sources 130:8–14

    Article  CAS  Google Scholar 

  25. Yu X, Pickup PG (2008) Recent advances in direct formic acid fuel cells (DFAFC). J Power Sources 182:124–132

    Article  CAS  Google Scholar 

  26. Zelitch I, Ochoa S (1953) Oxidation and reduction of glycolic and glyoxylic acids in plants I. Glycolic acid oxidase. J Biol Chem 201:707–718

    CAS  Google Scholar 

  27. Grasemann M, Laurenczy G (2012) Formic acid as a hydrogen source–recent developments and future trends. Energy Environ Sci 5:8171–8181

    Article  CAS  Google Scholar 

  28. Genovese C, Ampelli C, Perathoner S, Centi G (2013) Electrocatalytic conversion of CO 2 on carbon nanotube-based electrodes for producing solar fuels. J Catal 308:237–249

    Article  CAS  Google Scholar 

  29. Shown I, Hsu H-C, Chang Y-C et al (2014) Highly efficient visible light photocatalytic reduction of CO2 to hydrocarbon fuels by Cu-nanoparticle decorated graphene oxide. Nano Lett 14:6097–6103

    Article  CAS  Google Scholar 

  30. De Falco M, Capocelli M, Centi G (2016) Dimethyl ether production from CO2 rich feedstocks in a one-step process: thermodynamic evaluation and reactor simulation. Chem Eng J 294:400–409

    Article  CAS  Google Scholar 

  31. Subramanian K, Asokan K, Jeevarathinam D, Chandrasekaran M (2007) Electrochemical membrane reactor for the reduction of carbondioxide to formate. J Appl Electrochem 37:255–260

    Article  CAS  Google Scholar 

  32. Song CS (2006) Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing. Catal Today 115:2–32

    Article  CAS  Google Scholar 

  33. Rosen BA, Salehi-Khojin A, Thorson MR et al (2011) Ionic liquid–mediated selective conversion of CO2 to CO at low overpotentials. Science 334:643–644

    Article  CAS  Google Scholar 

  34. Li CW, Kanan MW (2012) CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films. J Am Chem Soc 134:7231–7234

    Article  CAS  Google Scholar 

  35. Lu Q, Rosen J, Zhou Y et al (2014) A selective and efficient electrocatalyst for carbon dioxide reduction. Nat Commun 5:3242

    Google Scholar 

  36. Zhu W, Zhang Y-J, Zhang H et al (2014) Active and selective conversion of CO2 to CO on ultrathin Au nanowires. J Am Chem Soc 136:16132–16135

    Article  CAS  Google Scholar 

  37. Chen Y, Kanan MW (2012) Tin oxide dependence of the CO2 reduction efficiency on tin electrodes and enhanced activity for tin/tin oxide thin-film catalysts. J Am Chem Soc 134:1986–1989

    Article  CAS  Google Scholar 

  38. Innocent B, Liaigre D, Pasquier D, Ropital F, Léger J-M, Kokoh K (2009) Electro-reduction of carbon dioxide to formate on lead electrode in aqueous medium. J Appl Electrochem 39:227–232

    Article  CAS  Google Scholar 

  39. Barton Cole E, Lakkaraju PS, Rampulla DM, Morris AJ, Abelev E, Bocarsly AB (2010) Using a one-electron shuttle for the multielectron reduction of CO2 to methanol: kinetic, mechanistic, and structural insights. J Am Chem Soc 132:11539–11551

    Article  CAS  Google Scholar 

  40. Le M, Ren M, Zhang Z, Sprunger PT, Kurtz RL, Flake JC (2011) Electrochemical reduction of CO2 to CH3OH at copper oxide surfaces. J Electrochem Soc 158:E45–E49

    Article  CAS  Google Scholar 

  41. Yan Y, Zeitler EL, Gu J, Hu Y, Bocarsly AB (2013) Electrochemistry of aqueous pyridinium: exploration of a key aspect of electrocatalytic reduction of CO2 to methanol. J Am Chem Soc 135:14020–14023

    Article  CAS  Google Scholar 

  42. Back S, Kim H, Jung Y (2015) Selective heterogeneous CO2 electroreduction to methanol. ACS Catal 5:965–971

    Article  CAS  Google Scholar 

  43. Reske R, Duca M, Oezaslan M, Schouten KJP, Koper MT, Strasser P (2013) Controlling catalytic selectivities during CO2 electroreduction on thin Cu metal overlayers. J Phys Chem Lett 4:2410–2413

    Article  CAS  Google Scholar 

  44. Roberts FS, Kuhl KP, Nilsson A (2015) High selectivity for ethylene from carbon dioxide reduction over copper nanocube electrocatalysts. Angew Chem 127:5268–5271

    Article  Google Scholar 

  45. Peterson AA, Nørskov JK (2012) Activity descriptors for CO2 electroreduction to methane on transition-metal catalysts. J Phys Chem Lett 3:251–258

    Article  CAS  Google Scholar 

  46. Manthiram K, Beberwyck BJ, Alivisatos AP (2014) Enhanced electrochemical methanation of carbon dioxide with a dispersible nanoscale copper catalyst. J Am Chem Soc 136:13319–13325

    Article  CAS  Google Scholar 

  47. Jhong H-R, Ma S, Kenis PJ (2013) Electrochemical conversion of CO2 to useful chemicals: current status, remaining challenges, and future opportunities. Curr Opin Chem Eng 2:191–199

    Article  Google Scholar 

  48. Zhu DD, Liu JL, Qiao SZ (2016) Recent advances in inorganic heterogeneous electrocatalysts for reduction of carbon dioxide. Adv Mater 28:3423–3452

    Article  CAS  Google Scholar 

  49. Chaplin R, Wragg A (2003) Effects of process conditions and electrode material on reaction pathways for carbon dioxide electroreduction with particular reference to formate formation. J Appl Electrochem 33:1107–1123

    Article  CAS  Google Scholar 

  50. Lu X, Leung DYC, Wang H, Leung MKH, Xuan J (2014) Electrochemical reduction of carbon dioxide to formic acid. ChemElectroChem 1:836–849

    Article  CAS  Google Scholar 

  51. Taheri A, Berben LA (2016) Making C–H bonds with CO2: production of formate by molecular electrocatalysts. Chem Commun 52:1768–1777

    Article  CAS  Google Scholar 

  52. Oloman C, Li H (2008) Electrochemical processing of carbon dioxide. ChemSusChem 1:385–391

    Article  CAS  Google Scholar 

  53. Kaneco S, Iwao R, Iiba K, Ohta K, Mizuno T (1998) Electrochemical conversion of carbon dioxide to formic acid on Pb in KOH/methanol electrolyte at ambient temperature and pressure. Energy 23:1107–1112

    Article  CAS  Google Scholar 

  54. Lide DR (2004) CRC handbook of chemistry and physics. CRC Press, Boca Raton

    Google Scholar 

  55. Köleli F, Balun D (2004) Reduction of CO2 under high pressure and high temperature on Pb-granule electrodes in a fixed-bed reactor in aqueous medium. Appl Catal A 274:237–242

    Article  CAS  Google Scholar 

  56. Jing W, Hua W, Zhenzhen H, Jinyu H (2015) Electrodeposited porous Pb electrode with improved electrocatalytic performance for the electroreduction of CO2 to formic acid. Front Chem Sci Eng 9:57–63

    Article  CAS  Google Scholar 

  57. Kwon Y, Lee J (2010) Formic acid from carbon dioxide on nanolayered electrocatalyst. Electrocatalysis 1:108–115

    Article  CAS  Google Scholar 

  58. Alvarez-Guerra M, Quintanilla S, Irabien A (2012) Conversion of carbon dioxide into formate using a continuous electrochemical reduction process in a lead cathode. Chem Eng J 207:278–284

    Article  CAS  Google Scholar 

  59. Lee CH, Kanan MW (2014) Controlling H+ vs CO2 reduction selectivity on Pb electrodes. ACS Catal 5:465–469

    Article  CAS  Google Scholar 

  60. Back S, Kim J-H, Kim Y-T, Jung Y (2016) On the mechanism of high product selectivity for HCOOH using Pb in CO2 electroreduction. Phys Chem Chem Phys 18:9652–9657

    Article  CAS  Google Scholar 

  61. Lv W, Zhang R, Gao P, Lei L (2014) Studies on the faradaic efficiency for electrochemical reduction of carbon dioxide to formate on tin electrode. J Power Sources 253:276–281

    Article  CAS  Google Scholar 

  62. Zhang R, Lv W, Li G, Mezaal MA, Li X, Lei L (2014) Retarding of electrochemical oxidation of formate on the platinum anode by a coat of Nafion membrane. J Power Sources 272:303–310

    Article  CAS  Google Scholar 

  63. Wu J, Harris B, Sharma PP, Zhou X-D (2013) Morphological stability of Sn electrode for electrochemical conversion of CO2. ECS Trans 58:71–80

    Article  CAS  Google Scholar 

  64. Wang Q, Dong H, Yu H (2014) Development of rolling tin gas diffusion electrode for carbon dioxide electrochemical reduction to produce formate in aqueous electrolyte. J Power Sources 271:278–284

    Article  CAS  Google Scholar 

  65. Prakash GS, Viva FA, Olah GA (2013) Electrochemical reduction of CO2 over Sn-Nafion® coated electrode for a fuel-cell-like device. J Power Sources 223:68–73

    Article  CAS  Google Scholar 

  66. Wang Q, Dong H, Yu H (2014) Fabrication of a novel tin gas diffusion electrode for electrochemical reduction of carbon dioxide to formic acid. RSC Adv 4:59970–59976

    Article  CAS  Google Scholar 

  67. Lei F, Liu W, Sun Y et al (2016) Metallic tin quantum sheets confined in graphene toward high-efficiency carbon dioxide electroreduction. Nat Commun 7:12697

    Article  CAS  Google Scholar 

  68. Zhang S, Kang P, Meyer TJ (2014) Nanostructured tin catalysts for selective electrochemical reduction of carbon dioxide to formate. J Am Chem Soc 136:1734–1737

    Article  CAS  Google Scholar 

  69. Zhao C, Wang J (2016) Electrochemical reduction of CO2 to formate in aqueous solution using electro-deposited Sn catalysts. Chem Eng J 293:161–170

    Article  CAS  Google Scholar 

  70. Du D, Lan R, Humphreys J et al (2016) Achieving both high selectivity and current density for CO2 reduction to formate on nanoporous tin foam electrocatalysts. ChemistrySelect 1:1711–1715

    Article  CAS  Google Scholar 

  71. Wang Y, Zhou J, Lv W, Fang H, Wang W (2016) Electrochemical reduction of CO2 to formate catalyzed by electroplated tin coating on copper foam. Appl Surf Sci 362:394–398

    Article  CAS  Google Scholar 

  72. Choi SY, Jeong SK, Kim HJ, Baek IH, Park KT (2016) Electrochemical reduction of carbon dioxide to formate on tin-lead alloys. ACS Sustain Chem Eng 4:1311–1318

    Article  CAS  Google Scholar 

  73. Wu J, Risalvato FG, Ma S, Zhou X-D (2014) Electrochemical reduction of carbon dioxide III. The role of oxide layer thickness on the performance of Sn electrode in a full electrochemical cell. J Mater Chem A 2:1647–1651

    Article  CAS  Google Scholar 

  74. Zhao C, Wang J, Goodenough JB (2016) Comparison of electrocatalytic reduction of CO2 to HCOOH with different tin oxides on carbon nanotubes. Electrochem Commun 65:9–13

    Article  CAS  Google Scholar 

  75. Li F, Chen L, Knowles GP, MacFarlane DR, Zhang J (2017) Hierarchical mesoporous SnO2 Nanosheets on carbon cloth: a robust and flexible electrocatalyst for CO2 reduction with high efficiency and selectivity. Angew Chem 129:520–524

    Article  Google Scholar 

  76. Kumar B, Atla V, Brian JP et al (2017) Reduced SnO2 porous nanowires with a high density of grain boundaries as catalysts for efficient electrochemical CO2-into-HCOOH conversion. Angew Chem Int Ed 56:3645–3649

    Article  CAS  Google Scholar 

  77. Kapusta S, Hackerman N (1983) The electroreduction of carbon dioxide and formic acid on tin and indium electrodes. J Electrochem Soc 130:607–613

    Article  CAS  Google Scholar 

  78. Hori Y, Kikuchi K, Suzuki S (1985) Production of CO and CH4 in electrochemical reduction of CO2 at metal electrodes in aqueous hydrogencarbonate solution. Chem Lett 14:1695–1698

    Article  Google Scholar 

  79. Ikeda S, Takagi T, Ito K (1987) Selective formation of formic acid, oxalic acid, and carbon monoxide by electrochemical reduction of carbon dioxide. Bull Chem Soc Jpn 60:2517–2522

    Article  CAS  Google Scholar 

  80. Martindale BC, Compton RG (2012) Formic acid electro-synthesis from carbon dioxide in a room temperature ionic liquid. Chem Commun 48:6487–6489

    Article  CAS  Google Scholar 

  81. Rosen BA, Zhu W, Kaul G, Salehi-Khojin A, Masel RI (2013) Water enhancement of CO2 conversion on silver in 1-ethyl-3-methylimidazolium tetrafluoroborate. J Electrochem Soc 160:H138–H141

    Article  CAS  Google Scholar 

  82. Watkins JD, Bocarsly AB (2014) Direct reduction of carbon dioxide to formate in high-gas-capacity ionic liquids at post-transition-metal electrodes. ChemSusChem 7:284–290

    Article  CAS  Google Scholar 

  83. Cherevko S, Zeradjanin AR, Keeley GP, Mayrhofer KJ (2014) A comparative study on gold and platinum dissolution in acidic and alkaline media. J Electrochem Soc 161:H822–H830

    Article  CAS  Google Scholar 

  84. Rand D, Woods R (1972) A study of the dissolution of platinum, palladium, rhodium and gold electrodes in 1 M sulphuric acid by cyclic voltammetry. J Electroanal Chem Interfacial Electrochem 35:209–218

    Article  CAS  Google Scholar 

  85. Yadav VSK, Purkait MK (2015) Electrochemical reduction of CO2 to HCOOH using zinc and cobalt oxide as electrocatalysts. New J Chem 39:7348–7354

    Article  CAS  Google Scholar 

  86. Yadav VSK, Purkait MK (2016) Solar cell driven electrochemical process for the reduction of CO2 to HCOOH on Zn and Sn electrocatalysts. Sol Energy 124:177–183

    Article  CAS  Google Scholar 

  87. Hori Y, Takahashi I, Koga O, Hoshi N (2002) Selective formation of C2 compounds from electrochemical reduction of CO2 at a series of copper single crystal electrodes. J Phys Chem B 106:15–17

    Article  CAS  Google Scholar 

  88. Kaneco S, Hiei N-H, Xing Y et al (2003) High-efficiency electrochemical CO2-to-methane reduction method using aqueous KHCO3 media at less than 273 K. J Solid State Electrochem 7:152–156

    Article  CAS  Google Scholar 

  89. Yim K-J, Song D-K, Kim C-S et al (2015) Selective, high efficiency reduction of CO2 in a non-diaphragm-based electrochemical system at low applied voltage. RSC Adv 5:9278–9282

    Article  CAS  Google Scholar 

  90. Kaneco S, Iiba K, Hiei N-H, Ohta K, Mizuno T, Suzuki T (1999) Electrochemical reduction of carbon dioxide to ethylene with high Faradaic efficiency at a Cu electrode in CsOH/methanol. Electrochim Acta 44:4701–4706

    Article  CAS  Google Scholar 

  91. Takahashi I, Koga O, Hoshi N, Hori Y (2002) Electrochemical reduction of CO2 at copper single crystal Cu(S)-[n(111) × (111)] and Cu(S)-[n(110) × (100)] electrodes. J Electroanal Chem 533:135–143

    Article  CAS  Google Scholar 

  92. Kaneco S, Katsumata H, Suzuki T, Ohta K (2006) Electrochemical reduction of CO2 to methane at the Cu electrode in methanol with sodium supporting salts and its comparison with other alkaline salts. Energy Fuels 20:409–414

    Article  CAS  Google Scholar 

  93. Sen S, Liu D, Palmore GTR (2014) Electrochemical reduction of CO2 at copper nanofoams. ACS Catal 4:3091–3095

    Article  CAS  Google Scholar 

  94. Guo S, Zhao S, Gao J et al (2017) Cu-CDots nanocorals as electrocatalyst for highly efficient CO2 reduction to formate. Nanoscale 9:298–304

    Article  CAS  Google Scholar 

  95. Zhao Y, Nakamura R, Kamiya K, Nakanishi S, Hashimoto K (2013) Nitrogen-doped carbon nanomaterials as non-metal electrocatalysts for water oxidation. Nat Commun 4:1–7

    Article  CAS  Google Scholar 

  96. Gong K, Du F, Xia Z, Durstock M, Dai L (2009) Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323:760–764

    Article  CAS  Google Scholar 

  97. Liu R, Wu D, Feng X, Müllen K (2010) Nitrogen-doped ordered mesoporous graphitic arrays with high electrocatalytic activity for oxygen reduction. Angew Chem 122:2619–2623

    Article  Google Scholar 

  98. Wu J, Yadav RM, Liu M et al (2015) Achieving highly efficient, selective, and stable CO2 reduction on nitrogen-doped carbon nanotubes. ACS Nano 9:5364–5371

    Article  CAS  Google Scholar 

  99. Sharma PP, Wu J, Yadav RM et al (2015) Nitrogen-Doped Carbon Nanotube Arrays for High-Efficiency Electrochemical Reduction of CO2: on the Understanding of Defects, Defect Density, and Selectivity. Angew Chem 127:13905–13909

    Article  Google Scholar 

  100. Kumar B, Asadi M, Pisasale D et al (2013) Renewable and metal-free carbon nanofibre catalysts for carbon dioxide reduction. Nat Commun 4:2819–2826

  101. Zhang S, Kang P, Ubnoske S et al (2014) Polyethylenimine-enhanced electrocatalytic reduction of CO2 to formate at nitrogen-doped carbon nanomaterials. J Am Chem Soc 136:7845–7848

    Article  CAS  Google Scholar 

  102. Wang H, Chen Y, Hou X, Ma C, Tan T (2016) Nitrogen-doped graphenes as efficient electrocatalysts for the selective reduction of carbon dioxide to formate in aqueous solution. Green Chem 18:3250–3256

    Article  CAS  Google Scholar 

  103. Sreekanth N, Nazrulla MA, Vineesh TV, Sailaja K, Phani KL (2015) Metal-free boron-doped graphene for selective electroreduction of carbon dioxide to formic acid/formate. Chem Commun 51:16061–16064

    Article  CAS  Google Scholar 

  104. Gao S, Jiao X, Sun Z et al (2016) Ultrathin Co3O4 Layers Realizing Optimized CO2 Electroreduction to Formate. Angew Chem Int Ed 55:698–702

    Article  CAS  Google Scholar 

  105. Gao S, Lin Y, Jiao X et al (2016) Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel. Nature 529:68–71

    Article  CAS  Google Scholar 

  106. Gao S, Sun Z, Liu W et al (2017) Atomic layer confined vacancies for atomic-level insights into carbon dioxide electroreduction. Nat Commun 8:14503–14511

  107. Kortlever R, Balemans C, Kwon Y, Koper MT (2015) Electrochemical CO2 reduction to formic acid on a Pd-based formic acid oxidation catalyst. Catal Today 244:58–62

    Article  CAS  Google Scholar 

  108. Rahaman M, Dutta A, Broekmann P (2017) Size-dependent activity of palladium nanoparticles: efficient conversion of CO2 into formate at low overpotentials. ChemSusChem. doi:10.1002/cssc.201601778

    Google Scholar 

  109. Isaacs M, Armijo F, Ramírez G et al (2005) Electrochemical reduction of CO2 mediated by poly-M-aminophthalocyanines (M = Co, Ni, Fe): poly-Co-tetraaminophthalocyanine, a selective catalyst. J Mol Catal A Chem 229:249–257

    Article  CAS  Google Scholar 

  110. Isaacs M, Canales J, Aguirre M et al (2002) Electrocatalytic reduction of CO2 by aza-macrocyclic complexes of Ni (II), Co (II), and Cu (II). Theoretical contribution to probable mechanisms. Inorg Chim Acta 339:224–232

    Article  CAS  Google Scholar 

  111. Pérez-Rodríguez S, Barreras F, Pastor E, Lázaro M (2016) Electrochemical reactors for CO2 reduction: from acid media to gas phase. Int J Hydrog Energy 41:19756–19765

    Article  CAS  Google Scholar 

  112. Pérez-Rodríguez S, García G, Calvillo L, Celorrio V, Pastor E, Lázaro M (2011) Carbon-supported Fe catalysts for CO2 electroreduction to high-added value products: a DEMS study: effect of the functionalization of the support. Int J Electrochem. doi:10.4061/2011/249804

    Google Scholar 

  113. Ampelli C, Genovese C, Marepally B, Papanikolaou G, Perathoner S, Centi G (2015) Electrocatalytic conversion of CO2 to produce solar fuels in electrolyte or electrolyte-less configurations of PEC cells. Faraday Discuss 183:125–145

    Article  CAS  Google Scholar 

  114. Reda T, Plugge CM, Abram NJ, Hirst J (2008) Reversible interconversion of carbon dioxide and formate by an electroactive enzyme. Proc Natl Acad Sci USA 105:10654–10658

    Article  CAS  Google Scholar 

  115. Wu J, Risalvato FG, Ke F-S, Pellechia P, Zhou X-D (2012) Electrochemical reduction of carbon dioxide I. Effects of the electrolyte on the selectivity and activity with Sn electrode. J Electrochem Soc 159:F353–F359

    Article  CAS  Google Scholar 

  116. Won DH, Choi CH, Chung J, Chung MW, Kim EH, Woo SI (2015) Rational design of a hierarchical tin dendrite electrode for efficient electrochemical reduction of CO2. ChemSusChem 8:3092–3098

    Article  CAS  Google Scholar 

  117. Tezuka M, Yajima T, Tsuchiya A, Matsumoto Y, Uchida Y, Hidai M (1982) Electroreduction of carbon dioxide catalyzed by iron-sulfur cluster compounds [Fe4S4(SR)4]2. J Am Chem Soc 104:6834–6836

    Article  CAS  Google Scholar 

  118. Ishida H, Tanaka H, Tanaka K, Tanaka T (1987) Selective formation of HCOO in the electrochemical CO2 reduction catalyzed by Ru(bpy)2(CO) 2+2 (bpy = 2,2′-bipyridine). J Chem Soc Chem Commun 2:131–132

    Article  Google Scholar 

  119. Ali MM, Sato H, Mizukawa T, Tsuge K, Haga M, Tanaka K (1998) Selective formation of HCO2 and C2O4 2− in electrochemical reduction of CO2 catalyzed by mono- and di-nuclear ruthenium complexes. Chemical Communications 2:249–250

    Article  Google Scholar 

  120. Ahn ST, Bielinski EA, Lane EM et al (2015) Enhanced CO2 electroreduction efficiency through secondary coordination effects on a pincer iridium catalyst. Chem Commun 51:5947–5950

    Article  CAS  Google Scholar 

  121. Kortlever R, Peters I, Koper S, Koper MT (2015) Electrochemical CO2 reduction to formic acid at low overpotential and with high faradaic efficiency on carbon supported bimetallic Pd-Pt nanoparticles. ACS Catal 5:3916–3923

    Article  CAS  Google Scholar 

  122. Feroci M, Orsini M, Rossi L, Sotgiu G, Inesi A (2007) Electrochemically promoted C–N bond formation from amines and CO2 in ionic liquid BMIm–BF4: synthesis of carbamates. J Org Chem 72:200–203

    Article  CAS  Google Scholar 

  123. Snuffin LL, Whaley LW, Yu L (2011) Catalytic electrochemical reduction of CO2 in ionic liquid EMIMBF3Cl. J Electrochem Soc 158:F155–F158

    Article  CAS  Google Scholar 

  124. Grace AN, Choi SY, Vinoba M et al (2014) Electrochemical reduction of carbon dioxide at low overpotential on a polyaniline/Cu2O nanocomposite based electrode. Appl Energy 120:85–94

    Article  CAS  Google Scholar 

  125. Eneau-Innocent B, Pasquier D, Ropital F, Léger J-M, Kokoh K (2010) Electroreduction of carbon dioxide at a lead electrode in propylene carbonate: a spectroscopic study. Appl Catal B 98:65–71

    Article  CAS  Google Scholar 

  126. Jitaru M, Lowy D, Toma M, Toma B, Oniciu L (1997) Electrochemical reduction of carbon dioxide on flat metallic cathodes. J Appl Electrochem 27:875–889

    Article  CAS  Google Scholar 

  127. Ogura K, Ferrell JR III, Cugini AV, Smotkin ES, Salazar-Villalpando MD (2010) CO2 attraction by specifically adsorbed anions and subsequent accelerated electrochemical reduction. Electrochim Acta 56:381–386

    Article  CAS  Google Scholar 

  128. Bhugun I, Lexa D, Saveant JM (1996) Catalysis of the electrochemical reduction of carbon dioxide by iron(0) porphyrins. Synergistic effect of Lewis acid cations. J Phys Chem 100:19981–19985

    Article  CAS  Google Scholar 

  129. Thorson MR, Siil KI, Kenis PJ (2013) Effect of cations on the electrochemical conversion of CO2 to CO. J Electrochem Soc 160:F69–F74

    Article  CAS  Google Scholar 

  130. Ryu J, Andersen T, Eyring H (1972) Electrode reduction kinetics of carbon dioxide in aqueous solution. J Phys Chem 76:3278–3286

    Article  CAS  Google Scholar 

  131. Mizuno T, Ohta K, Sasaki A, Akai T, Hirano M, Kawabe A (1995) Effect of temperature on electrochemical reduction of high-pressure CO2 with In, Sn, and Pb electrodes. Energy Sources 17:503–508

    Article  CAS  Google Scholar 

  132. Ito K, Ikeda S, Okabe M (1980) Electrochemical reduction of carbon-dioxide dissolved under high-pressure 1. in an aqueous-solution of inorganic salt. Denki Kagaku 48:247–252

    CAS  Google Scholar 

  133. Ito K, Ikeda S, Iida T, Niwa H (1981) Electrochemical reduction of carbon-dioxide dissolved under high-pressure 2. in aqueous-solution of tetraalkylammonium salts. Denki Kagaku 49:106–112

    CAS  Google Scholar 

  134. Ito K, Ikeda S, Iida T, Nomura A (1982) Electrochemical reduction of carbon-dioxide dissolved under high-pressure 3. in non-aqueous electrolytes. Denki Kagaku 50:463–469

    CAS  Google Scholar 

  135. Asano K, Hibino T, Iwahara H (1995) A novel solid oxide fuel cell system using the partial oxidation of methane. J Electrochem Soc 142:3241–3245

    Article  CAS  Google Scholar 

  136. Todoroki M, Hara K, Kudo A, Sakata T (1995) Electrochemical reduction of high pressure CO2 at Pb, Hg and In electrodes in an aqueous KHCO3 solution. J Electroanal Chem 394:199–203

    Article  Google Scholar 

  137. Scialdone O, Galia A, Nero GL, Proietto F, Sabatino S, Schiavo B (2016) Electrochemical reduction of carbon dioxide to formic acid at a tin cathode in divided and undivided cells: effect of carbon dioxide pressure and other operating parameters. Electrochim Acta 199:332–341

    Article  CAS  Google Scholar 

  138. Martín AJ, Larrazábal GO, Pérez-Ramírez J (2015) Towards sustainable fuels and chemicals through the electrochemical reduction of CO 2: lessons from water electrolysis. Green Chem 17:5114–5130

    Article  CAS  Google Scholar 

  139. Hirunsit P (2013) Electroreduction of carbon dioxide to methane on copper, copper–silver, and copper–gold catalysts: a DFT study. J Phys Chem C 117:8262–8268

    Article  CAS  Google Scholar 

  140. Kahl T, Schröder K, Lawrence F, Marshall W, Höke H, Jäckh R (2002) Ullmann’s Encyclopedia of industrial chemistry. Wiley, Weinheim

    Google Scholar 

Download references

Acknowledgements

One of the authors (Du) thanks the University of Warwick for a PhD studentship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanwen Tao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, D., Lan, R., Humphreys, J. et al. Progress in inorganic cathode catalysts for electrochemical conversion of carbon dioxide into formate or formic acid. J Appl Electrochem 47, 661–678 (2017). https://doi.org/10.1007/s10800-017-1078-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-017-1078-x

Keywords

Navigation