Skip to main content
Log in

Electro-reduction of carbon dioxide to formate on lead electrode in aqueous medium

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The electrochemical reduction of carbon dioxide on a lead electrode was studied in aqueous medium. Preliminary investigations carried out by cyclic voltammetry were used to determine the optimized conditions of electrolysis. They revealed that the CO2 reduction process was enhanced at a pH value of 8.6 for the cathodic solution i.e. when the predominant form of CO2 was hydrogenocarbonate ion. Long-term electrolysis was carried out using both potentiometry and amperometry methods in a filter-press cell in which the two compartments were separated by a cation-exchange membrane (Nafion® 423). Formate was detected and quantified by chromatography as the exclusive organic compound produced with a high Faradaic yield (from 65% to 90%). This study also revealed that the operating temperature played a key role in the hydrogenation reaction of carbon dioxide into formate in aqueous medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hori Y, Murata A (1990) Electrochim Acta 35:1777

    Article  CAS  Google Scholar 

  2. Azuma M, Hashimoto K, Hiramoto M, Watanabe M, Sakata T (1990) J Electrochem Soc 137:1772

    Article  CAS  Google Scholar 

  3. Kyriacou GZ, Anagnostopoulos AK (1993) J Appl Electrochem 23:483

    Article  CAS  Google Scholar 

  4. Hara K, Tsuneto A, Kudo A, Sakata T (1994) J Electrochem Soc 141:2097

    Article  CAS  Google Scholar 

  5. Jitaru M, Lowy DA, Toma M, Toma BC, Oniciu L (1997) J Appl Electrochem 27:875

    Article  CAS  Google Scholar 

  6. Chaplin RPS, Wragg AA (2003) J Appl Electrochem 33:1107

    Article  CAS  Google Scholar 

  7. Qu J, Zhang X, Wang Y, Xie C (2005) Electrochim Acta 50:3576

    Article  CAS  Google Scholar 

  8. Gattrell M, Gupta N, Co A (2006) J Electroanal Chem 594:1

    Article  CAS  Google Scholar 

  9. Subramanian K, Asokan K, Jeevarathinam D, Chandrasekaran M (2007) J Appl Electrochem 37:255

    Article  CAS  Google Scholar 

  10. Rice C, Ha S, Masel RI, Wieckowski A (2003) J Power Sources 115:229

    Article  CAS  Google Scholar 

  11. Lovic JD, Tripkovic AV, Gojkovic SL, Popovic KD, Tripkovic DV, Olszewski P, Kowal A (2005) J Electroanal Chem 581:294

    Article  CAS  Google Scholar 

  12. Song C, Khanfar M, Pickup PG (2006) J Appl Electrochem 36:339

    Article  CAS  Google Scholar 

  13. Choi J-H, Jeong K-J, Dong Y, Han J, Lim T-H, Lee J-S, Sung Y-E (2006) J Power Sources 163:71

    Article  CAS  Google Scholar 

  14. Kaneco S, Iiba K, Ohta K, Mizuno T, Saji A (1998) J Electroanal Chem 441:215

    Article  CAS  Google Scholar 

  15. Mizuno T, Kawamoto M, Kaneco S, Ohta K (1998) Electrochim Acta 43:899

    Article  CAS  Google Scholar 

  16. Kaneco S, Iiba K, Ohta K, Mizuno T, Suzuki T (1998) Electrochim Acta 44:4701

    Article  Google Scholar 

  17. Kaneco S, Iiba K, Ohta K, Mizuno T (2000) Energy Sources 22:127

    Article  CAS  Google Scholar 

  18. Aydin R, Koleli F (2002) J Electroanal Chem 535:107

    Article  CAS  Google Scholar 

  19. Li H, Oloman C (2005) J Appl Electrochem 35:955

    Article  CAS  Google Scholar 

  20. Hara K, Tsuneto A, Kudo A, Sakata T (1997) J Electroanal Chem 434:239

    Article  CAS  Google Scholar 

  21. Kaneco S, Katsumata H, Suzuki T, Ohta K (2006) Electrochim Acta 51:3316

    Article  CAS  Google Scholar 

  22. Gupta N, Gattrell M, Macdougall B (2006) J Appl Electrochem 36:161

    Article  CAS  Google Scholar 

  23. Taguchi S, Aramata A (1994) Electrochim Acta 39:2533

    Article  CAS  Google Scholar 

  24. Hori Y, Konishi H, Futamura T, Murata A, Koga O, Sakurai H, Oguma K (2005) Electrochim Acta 50:5354

    Article  CAS  Google Scholar 

  25. Hori Y, Wakebe H, Tsukamoto T, Koga O (1994) Electrochim Acta 39:1833

    Article  CAS  Google Scholar 

  26. Yoshitake H, Kikkawa T, Muto G, Ota K-I (1995) J Electroanal Chem 396:491

    Article  Google Scholar 

  27. Terunuma Y, Saitoh A, Momose Y (1997) J Electroanal Chem 434:69

    Article  CAS  Google Scholar 

  28. Hara K, Kudo A, Sakata T (1997) J Electroanal Chem 421:1

    Article  CAS  Google Scholar 

  29. Hara K, Sakata T (1997) J Electrochem Soc 144:539

    Article  CAS  Google Scholar 

  30. Koleli F, Ropke T, Hamann CH (2003) Electrochim Acta 48:1595

    Article  CAS  Google Scholar 

  31. Hori Y, Ito H, Okano K, Nagasu K, Sato S (2003) Electrochim Acta 48:2651

    Article  CAS  Google Scholar 

  32. Kobayashi T, Takahashi H (2004) Energy Fuels 18:285

    Article  CAS  Google Scholar 

  33. Udupa KS, Subramanian GS, Udupa HVK (1971) Electrochim Acta 16:1593

    Article  CAS  Google Scholar 

  34. Koleli F, Atilan T, Palamut N, Gizir AM, Aydin R, Hamann CH (2003) J Appl Electrochem 33:447

    Article  Google Scholar 

  35. Koleli F, Balun D (2004) Appl Catal A: General 274:237

    Article  CAS  Google Scholar 

  36. Akahori Y, Iwanaga N, Kato Y, Hamamoto O, Ishii M (2004) Electrochemistry 72:266

    CAS  Google Scholar 

  37. Kaneco S, Iiba K, Katsumata H, Suzuki T, Ohta K (2006) Electrochim Acta 51:4880

    Article  CAS  Google Scholar 

  38. Van Rysselberghe P, Alkire GJ, McGee JM (1946) J Am Chem Soc 68:2050

    Article  Google Scholar 

  39. Teeter TE, Van Rysselberghe P (1954) J Chem Phys 22:759

    CAS  Google Scholar 

  40. Hori Y, Suzuki S (1983) J Electrochem Soc 130:2387

    Article  CAS  Google Scholar 

  41. Stalder CJ, Chao S, Wrighton MS (1984) J Am Chem Soc 106:3673

    Article  CAS  Google Scholar 

  42. Spichiger-Ulmann M, Augustynski J (1985) J Chem Soc Faraday Trans 81:713

    Article  CAS  Google Scholar 

  43. Hori Y, Murata A, Takahashi R, Suzuki S (1987) J Chem Soc Chem Commun 728

  44. Eggins BR, Bennett EM, McMullan EA (1996) J Electroanal Chem 408:165

    Article  Google Scholar 

  45. Marwood M, Doepper R, Renken A (1997) Appl Catal A Gen 151:223

    Article  CAS  Google Scholar 

  46. Pechini MP, Adams N (1967) US Patent 3, 330, 697:1

  47. Forti JC, Olivi P, de Andrade AR (2001) Electrochim Acta 47:913

    Article  CAS  Google Scholar 

  48. Hori Y, Suzuki S (1982) Bull Chem Soc Jpn 55:660

    Article  CAS  Google Scholar 

  49. Sullivan BP, Krist K, Guard HE (eds) (1993) Electrochemical and electrocatalytic reactions of carbon dioxide. Elsevier, Amsterdam, p 6

    Google Scholar 

  50. Hori Y, Koga O, Yamazaki H, Matsuo T (1995) Electrochim Acta 40:2617

    Article  CAS  Google Scholar 

  51. Li H, Oloman C (2007) J Appl Electrochem 37:1107

    Article  CAS  Google Scholar 

  52. Bard AJ, Faulkner LR (1980) Electrochemical methods: fundamentals and applications. Wiley, New York

    Google Scholar 

  53. Beden B, Léger J-M, Lamy C (1992) Electrocatalytic oxidation of oxygenated aliphatic organic compounds at noble metal electrodes. In: Bockris JO’M et al (eds) Modern aspects of electrochemistry, vol 22. Plenum Press, New York, p 105

  54. Parpot P, Kokoh KB, Beden B, Lamy C (1993) Electrochim Acta 38:1679

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. B. Kokoh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Innocent, B., Liaigre, D., Pasquier, D. et al. Electro-reduction of carbon dioxide to formate on lead electrode in aqueous medium. J Appl Electrochem 39, 227–232 (2009). https://doi.org/10.1007/s10800-008-9658-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-008-9658-4

Keywords

Navigation