Skip to main content

Advertisement

Log in

The systemic approach to technological education: effects of transferred learning in resolving a physics problem

  • Published:
International Journal of Technology and Design Education Aims and scope Submit manuscript

Abstract

The purpose of this study is to verify whether pupils (15–16 years old) who have received technology education on a systemic approach of industrial systems, are better than other pupils (of the same age but from other academic domains such as literary ones or ones that are economics-based) at solving physical science problems which involve systemic reasoning. The results show that there is a positive transfer effect of the systems approach applied to industrial automatisms on systems of another nature (hydrodynamic and electrical problems). However, this effect is less important for the pupils who study engineering sciences initiation for just 1 year (ISI) than for those who continue this education (SI) for a further year.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. It is somewhat surprising that a counter argument (like less water passes through B but it circulates faster, so the flow stays the same) which normally marks the passing from the intermediary stage to the conserving stage is never used here.

  2. This term seems preferable to that of “constant” flow, which may be deemed ambiguous, and which is reserved for qualifying the responses of pupils who esteem that the flow remains unchanged at all points in the circuit after an increased loss of charge. But one could also talk about “conservative flux"as physicists do, or less technically, of “conservation of water quantity”.

  3. (cf. the 1 answers in Table 2 where—it means that the flow was judged as being lesser + greater, and = identical to what it was in S1).

References

  • Andreucci, C. (2006). La fabrication d’artefacts comme moyen didactique de conceptualisation de la réalité technique. Aster, 41, 153–184.

    Google Scholar 

  • Andreucci, C. (2008). The structuring role of artefacts in thought development. In J. Ginestié (Ed.), The cultural transmission of artefacts, skills and knowledge. Eleven studies in technology education (pp. 21–41). Rotterdam: Sense Publishers.

    Google Scholar 

  • Barak, M. (1990). Imparting basics in technology through an instructional system for computerized process control. Research in Sciences and Technology Education, 8(1), 53–67.

    Article  Google Scholar 

  • Barak, M., & Williams, P. (2007). Learning elemental structure and dynamic processes in technology systems: A cognitive frameworks. International Journal of Technology and Design Education, 17, 323–340.

    Article  Google Scholar 

  • von Bertalanffy, L. (1968). Organismic Psychology and systems theory. Worchester: Clark University Press.

    Google Scholar 

  • Blondin, C., Closset, J. L., & Lafontaine, D. (1990). Résolution de problèmes d’hydrodynamique face à un circuit concret - Comparaison des stratégies avant et après apprentissage. European Journal of Psychology of Education, 5(4), 517–531.

    Article  Google Scholar 

  • Blondin, C., Closset, J. L., & Lafontaine, D. (1992). Raisonnements naturels en hydrodynamique. Revue Française de Pédagogie, 100, 71–80.

    Article  Google Scholar 

  • BOEN, Bulletin officiel du ministère de l’éducation nationale et du ministère de la recherche (2001). 8, HS du 31 aout. www.education.gouv.fr/bo/2001/hs2/seconde2.htm.

  • Brousseau, G. (1997). Theory of didactical situations in mathematics: didactiques des mathématiques, 19701990 (N. Balacheff, M. Cooper, R. Sutherland & V. Warfield, Trans.)., Dordrecht: Kluwer.

  • Brown, J. S., et al. (1989). Situated cognition and the culture of learning. Educational Researcher, 18(1), 32–42.

    Google Scholar 

  • Chatoney, M. (2005). Activités de production et construction du concept de matériau en réalisation sur projet en classe de CP. In P. Vérillon, P. J. Ginestié, et al. (Eds.), Produire en technologie à l’école et au collège (pp. 279–306). Paris: INRP.

    Google Scholar 

  • Chatoney, M. (2006). Organiser les activités de production à l’école primaire–Sélectionner des matériaux avec des élèves de 6 ans. Aster, 41, 139–158.

    Google Scholar 

  • Closset, J. L. (1989). Les obstacles à l’apprentissage de l’électrocinétique. Bulletin de l’union des physiciens, 716, 931–950.

    Google Scholar 

  • de Rosnay, J. (1975). Le macroscope. Paris: Seuil.

    Google Scholar 

  • de Vries, M. (2005). Teaching about technology. Dordrecht: Springer.

    Google Scholar 

  • Deforge, Y. (1985). Technologie et génétique de l’objet industriel. Paris: Maloine.

    Google Scholar 

  • Dorst, K. (2006). Design problems and design paradoxes. Design Issue, 22(3), 4–17.

    Article  Google Scholar 

  • Dubois, S. & Gartiser, N. (2005). L’impact du concept de problème sur son processus de résolution. Application à la conception de systèmes techniques. Actes du 6° congrès international de génie industriel, 7–10 juin, Besançon.

  • Froment, J. P. (2002). La valeur du schéma cinématique en tant qu’artéfact cognitif. Didaskalia, 21, 43–80.

    Google Scholar 

  • Gille, B. (1978). Histoire des techniques. Paris: Gallimard.

    Google Scholar 

  • Ginestié, J. (1992). Contribution à la didactique des disciplines technologiques: acquisition et utilisation d’un langage d’automatisme. Thèse de doctorat de l’Université de Provence (mention sciences de l’éducation). France: Aix-en-Provence.

    Google Scholar 

  • Ginestié, J. (2008). Gestepro, a research laboratory in science, technology and vocational education. In J. Ginestié (Ed.), The cultural transmission of artefacts, skills and knowledge: eleven studies in technology education (pp. 3–6). Rotterdam: Sense Publishers.

    Google Scholar 

  • Inhelder, B., & Cellerier, G. (1992). Les chemins de la découverte chez l’enfant. Paris: Delachaux and Niestlé.

    Google Scholar 

  • Joshua, S., & Dupin, J. J. (1993). Introduction à la didactique des sciences et des mathématiques. Paris: PUF.

    Google Scholar 

  • Lebahar, J. C. (2006). Pratiques professionnelles et enseignement de la technique d’organigramme en architecture: problèmes de transposition didactique. Didaskalia, 29, 9–40.

    Google Scholar 

  • Lebeaume, J. (2000). L’éducation technologique. Histoire et méthode. Paris: ESF.

    Google Scholar 

  • Lemoigne, J. L. (1990). La modélisation des systèmes complexes, EFCET system. Paris: Dunod.

    Google Scholar 

  • Martinand, J. L. (2003). L’éducation technologique à l’école moyenne en France: Problèmes de didactique curriculaire. Revue canadienne de l’enseignement de sciences des mathématiques et des technologies, 3(1), 101–106.

    Google Scholar 

  • Morin, E. (1990). Introduction à la pensée complexe, Communication et complexité. Prague: ESF.

    Google Scholar 

  • Simon, H. A. (1991). Sciences des systèmes, sciences de l’artificiel. Paris: Dunod.

    Google Scholar 

  • Tiberghien, A. (2003). Des connaissances naïves au savoir scientifique. In M. Kail & M. Fayol (Eds.), Les sciences cognitives et l’école. La question des apprentissages (pp. 333–443). Paris: Presses Universitaires de France.

    Google Scholar 

  • Viennot, L. (2006). Modélisation dimensionnellement réductrice et traitement particulaire dans l’enseignement de la physique. Didaskalia, 28, 6–32.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colette Andreucci.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andreucci, C., Chatoney, M. & Ginestie, J. The systemic approach to technological education: effects of transferred learning in resolving a physics problem. Int J Technol Des Educ 22, 281–296 (2012). https://doi.org/10.1007/s10798-010-9148-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10798-010-9148-y

Keywords

Navigation