Skip to main content
Log in

Multi-Party Quantum Steganography

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Steganography has been proposed as a data hiding technique. As a derivation, quantum steganography based on quantum physics has also been proposed. In this paper, we extend the results in presented (Mihara, Phys. Lett. 379, 952 2015) and propose a multi-party quantum steganography technique that combines quantum error-correcting codes with entanglement. The proposed protocol shares an entangled state among n +1 parties and sends n secret messages, corresponding to the n parties, to the other party. With no knowledge of the other secret messages, the n parties can construct a stego message by cooperating with each other. Finally, we propose a protocol for sending qubits using the same technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography:public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, p. 175, Bangalore, India (1984)

  2. Ekert, G.: Phys. Rev. Lett. 661, 67 (1991)

    Google Scholar 

  3. Terhal, B.M., DiVincenzo, D.P., Leung, D.W.: Hiding bits in bell states. Phys. Rev. Lett. 86, 5807 (2001)

    Article  ADS  Google Scholar 

  4. DiVincenzo, D.P., Leung, D.W., Terhal, B.M.: Quantum data hiding. IEEE Trans. Inform. Theory 48, 580 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Eggeling, T., Werner, R.F.: Hiding classical data in multipartite quantum states. Phys. Rev. Lett. 89, 097905 (2002)

    Article  ADS  Google Scholar 

  6. DiVincenzo, D.P., Hayden, P., Terhal, B.M.: Hiding quantum data. Found. Phys. 33, 1629 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Curty, M., Santos, D.J.: Protocols for Quantum steganography. In: 2nd Bielefeld Workshop on Quantum Information and Complexity, p 12, Bielefeld, Germany (2000)

  8. Natori, S.: Why quantum steganography can be stronger than classical steganography. Quant. Comput. Inform. 102, 235 (2006)

    Article  MathSciNet  Google Scholar 

  9. Gea-Banacloche, J.: Hiding messages in quantum data. J. Math. Phys. 43, 4531 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Qu, Z.-G., Chen, X.-B., Zhon, X.-J., Niu, X.-X., Yang, Y.-X.: Novel quantum steganography with large payload. Opt. Commun. 283, 4782 (2010)

    Article  ADS  Google Scholar 

  11. Qu, Z.-G., Chen, X.-B., Luo, M.-X., Niu, X.-X., Yang, Y.-X.: Quantum steganography with large payload based on entanglement swapping of -type entangled states. Opt. Commun. 284, 2075 (2011)

    Article  ADS  Google Scholar 

  12. Shaw, B.A., Brun, T.A.: Quantum steganography with noisy quantum channels. Phys. Rev. A 83, 022310 (2011)

    Article  ADS  Google Scholar 

  13. Mihara, T.: Quantum Steganography Embedded Any Secret Text without Changing the Content of Cover Data. J. Quant. Inform. Sci. 2, 10 (2012)

    Article  Google Scholar 

  14. Mihara, T.: A new framework of steganography using the content of cover data. J. Inf. Hiding Multimed. Signal Process. 5, 117 (2014)

    Google Scholar 

  15. Mihara, T.: Quantum steganography using prior entanglement. Phys. Lett. A 379, 952 (2015)

    Article  MATH  Google Scholar 

  16. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an Unknown Quantum State via Dual Classical and Einstein-Podolsky-Rosen Channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  18. Steane, A.M.: Error correction codes in quantum theory. Phys. Rev. Lett. 77, 793 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Mihara.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mihara, T. Multi-Party Quantum Steganography. Int J Theor Phys 56, 576–583 (2017). https://doi.org/10.1007/s10773-016-3199-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-016-3199-0

Keywords

Navigation