Skip to main content
Log in

Gravitational Lensing in the Strong Field Limit for Kar’s Metric

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this paper we calculate the strong field limit deflection angle for a light ray passing near a scalar charged spherically symmetric object, described by a metric which comes from the low-energy limit of heterotic string theory. Then, we compare the expansion parameters of our results with those obtained in the Einstein’s canonical frame, obtained by a conformal transformation, and we show that, at least at first order, the results do not agree.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. This metric was obtained independently by Wyman in 1981 in Ref. [24], but its equivalence with the JNW’s metric was not known until 1997 by Virbhadra in Ref. [25]. See Refs. [2628] for further details regarding the gravitational lensing in this metric and classification of its singularities.

  2. By making y = A(x) and \(z=\frac {y-y_{0}}{1-y_{0}}\).

  3. For ζ=0 all the expressions reduce to those of Schwarzschild.

  4. The simbol \(\left [\frac {dI_{R}(x_{m})}{d\zeta }\right ]_{\zeta =0}\) means the derivative evaluated at ζ=0.

References

  1. Misner, C., Thorne, K., Wheeler, J.A.: Gravitation. W. H. Freeman and Company, California (1973)

    Google Scholar 

  2. Will, C.M.: The Confrontation between General Relativity and Experiment. Living Rev. Relativity 9, 3 (2006)

    Article  ADS  MATH  Google Scholar 

  3. Psaltis, D.: Two approaches to testing general relativity in the strong-field regime. J. Phys.: Conf. Ser. 189, 012033 (2009)

    ADS  Google Scholar 

  4. Einstein, A., Lorentz, H.A., Weyl, H., Minkowski, H.: The principle of Relativity. Dover Publications (1952)

  5. Walsh, D., Carswell, R.F., Weyman, R.J.: 0957 + 561 A, B - Twin quasistellar objects or gravitational lens. Nature 279, 381–384 (1979)

    Article  ADS  Google Scholar 

  6. Fort, B., Miller, Y.: Arc(let)s in clusters of galaxies. Astron Astrophys. Rev. 5, 239–292 (1994)

    Article  ADS  Google Scholar 

  7. Narasimha, D.: Gravitational microlensing. Bull. Astr. Soc. India 23, 489–502 (1995)

    ADS  Google Scholar 

  8. Bozza, V.: Gravitational lensing in the strong field limit. Phys. Rev. D 66, 103001 (2002)

    Article  ADS  Google Scholar 

  9. Darwin, C.: The Gravity Field of a Particle. Proc. Roy. Soc. London A249, 180 (1959)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Darwin, C.: The Gravity Field of a Particle. II. Proc. Roy. Soc. London A263, 39 (1961)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Atkiston, R.: On light tracks near a very massive star. Astron. J. 70, 517–523 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  12. Virbhadra, K.S.: Relativistic images of Schwarzschild black hole lensing. Phys. Rev. D 79, 083004 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  13. Doeleman, S.S., Fish, V.L., Broderick, A.E., Loeb, A., Rogers, A.E.E.: Detecting flaring structures in Sagittarius A* with high-frequency VLBI. Astrophys. J. 695, 59–74 (2009)

    Article  ADS  Google Scholar 

  14. Fish, V.L., Doeleman, S.S.: Observing a black hole event horizon: (sub)millimeter VLBI of Sgr A*. Proc. IAU Symp. 261, 271–276 (2009)

    Article  ADS  Google Scholar 

  15. Will, C.M.: Testing the General Relativistic “No Hair” Theorems Using the Galactic Center Black Hole Sagittarius A*. Astrophys. J. 674, L25 (2008)

    Article  ADS  Google Scholar 

  16. Broderick, A.E., Johannsen, T., Loeb, A., Psaltis, D.: Testing the No-hair Theorem with Event Horizon Telescope Observations of Sagittarius A*. Astrophys. J. 784, 7 (2014)

    Article  ADS  Google Scholar 

  17. Bozza, V., Capozziello, S., Iovane, G., Scarpetta, G.: Strong field limit of black hole gravitational lensing. Gen. Rel. Grav. 33, 1844–1854 (2001)

    Article  MATH  Google Scholar 

  18. Virbhadra, K.S., Ellis, G.F.R.: Schwarzschild black hole lensing. Phys. Rev. D 62, 084003 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  19. Virbhadra, K.S., Ellis, G.F.R.: Gravitational lensing by naked singularities. Phys. Rev. D 65, 103004 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  20. Eiroa, E.F., Romero, G.E., Torres, D.F.: Reissner-Nordstrm black hole lensing. Phys. Rev. D 66, 024010 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  21. Bahadra, A.: Gravitational lensing by a charged black hole of string theory. Phys. Rev. D 67, 103009 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  22. Whisker, R.: Strong gravitational lensing by braneworld black holes. Phys. Rev. D 71, 064004 (2005)

    Article  ADS  Google Scholar 

  23. Kar, S.: Naked singularities in low-energy, effective string theory. Class. Quantum Grav. 16, 101–115 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Wyman, M.: Static spherically symmetric scalar fields in general relativity. Phys. Rev. D 24, 839 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  25. Virbhadra, K.S.: Janis Newman Winicour and Wyman Solutions are the Same. Int. J. Mod. Phys. A 12, 4831–4836 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Virbhadra, K.S.: Nature of singularity in Einstein massless scalar theory. Int. J. Mod. Phys. D 6, 357–362 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  27. Virbhadra, K.S.: Naked singularities and Seiferts conjecture. Phys. Rev. D 60, 104041 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  28. Virbhadra, K.S., Keeton, C.R.: Time delay and magnification centroid due to gravitational lensing by black holes and naked singularities. Phys. Rev. D 77, 124014 (2008)

    Article  ADS  Google Scholar 

  29. Janis, A.I., Newman, E.T., Winicour, J.: Reality of the Schwarzschild Singularity. Phys. Rev. Lett. 20, 878 (1968)

    Article  ADS  Google Scholar 

  30. Alvarez, E., Conde, J.: Are the string and Einstein frames equivalent. Int. J. Mod. Phys. A 12, 4831–4836 (1997)

    Article  Google Scholar 

  31. Virbhadra, K.S., Narasimha, D., Chitre, S.M.: Role of the scalar field in gravitational lensing. Astron. Astrophys. 337, 1–8 (1998)

    ADS  Google Scholar 

  32. Claudel, C.M., Virbhadra, K., Ellis, G.: The geometry of photon surfaces. J. Math. Phys. 42, 818–838 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Brans, C., Dicke, C.H.: Mach’s Priciple and Relativistic Theory of Gravitation. Phys. Rev. 124, 925 (1961)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Jordan, P.: Zum gegenwiirtigen Stand der Diracschen kosmologischen Hypothesen. Z. Phys. 157 (1959)

  35. Dicke, R.H.: Mach’s Principle and Invariance under Transformation of Units. Phys. Rev. 125, 2163 (1962)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Damour, T., Esposito-Farese, G.: Tensor-multi-scalar theories of gravitation. Class. Quant. Grav. 9, 2093 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Faraoni, V., Gunzig, E.: Einstein frame or Jordan frame? Int. J. Theor. Phys. 38, 217 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  38. Capozziello, S., Martin-Moruno, P.C., Rubano, P.: Physical non-equivalence of the Jordan and Einstein frames. Phys. Lett. B 689, 117–121 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  39. Postma, M., Volponi, M.: Equivalence of the Einstein and Jordan frames. Phys. Rev. D 90, 103516 (2014)

    Article  ADS  Google Scholar 

  40. Faroni, V., Gunzig, E.: Einstein frame or Jordan frame? J. Theor. Phys. 38, 217 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  41. Magnano, G., Sokolowski, L.M.: On Physical Equivalence between Nonlinear Gravity Theories and a General Relativistic Self Gravitating Scalar Field. Phys. Rev. D 50, 5039–5059 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  42. Corda, C.: Interferometric detection of gravitational waves: the definitive test for General Relativity. Int. J. Mod. Phys. D 18, 2275–2282 (2009)

    Article  ADS  MATH  Google Scholar 

  43. Corda, C.: Gravitational wave astronomy: the definitive test for the ’Einstein frame versus Jordan frame’ controversy. Astrop. Phys. 34, 412–419 (2011)

    Article  ADS  Google Scholar 

  44. Quiros, I., Garcia-Salcedo, R.: The conformal transformations controversy: what are we missing? Gen. Relativ. Gravit. 45, 489–518 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Eisenhouer, F., et al.: SPIE Conf. Ser 7013 (2008)

  46. Gillisen, S., et al.: Proc. SPIE 7734. Optical and Infrared Interferometry II (2010)

Download references

Acknowledgments

Thanks are due to K. S Virbhadra and F. A. Diaz for valuable discussions and helpful correspondence, and to the anonymous referees for their constructive inputs. This research was supported by the National Astronomical Observatory, National University of Colombia and one of us, A.C., also thanks the Department of Mathematics, Konrad Lorenz University for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos A. Benavides.

Appendix A: Finding \(\hat {\alpha }(\theta )\) for Kar’s Metric

Appendix A: Finding \(\hat {\alpha }(\theta )\) for Kar’s Metric

In order to calculate the deflection angle in the strong field limit, we used Kar’s metric in the form proposed in (17), i.e.,

$$ ds_{str}^{2}=\underbrace{\left( 1-\frac{1}{x}\right)^{\zeta+\sqrt{1-\zeta^{2}}}}_{A(x)}dt^{2}- \underbrace{\left( 1-\frac{1}{x}\right)^{\zeta-\sqrt{1-\zeta^{2}}}}_{B(x)}dx^{2}- \underbrace{\left( 1-\frac{1}{x}\right)^{1+\zeta-\sqrt{1-\zeta^{2}}} x^{2}}_{C(x)}d{\Omega}^{2}. $$
(40)

The deflection angle is calculated using the strong field expansion [8, 19]

$$ \widehat{\alpha}(\theta)=\overline{a}\ln\left( \frac{\theta D_{OL}}{u_{m}}-1\right)+\overline{b}, $$
(41)

where

$$\begin{array}{@{}rcl@{}} \bar{a} & = & \frac{R(0,x_{m})}{2\sqrt{\beta_{m}}}, \\ \bar{b} & = & b_{R}+\bar{a}\ln\left[\frac{2\beta_{m}}{y_{m}}\right]-\pi \end{array} $$
(42)

and

$$ u_{m}=\sqrt{\frac{C(x_{m})}{A(x_{m})}}. $$
(43)

1.1 Calculation of \(\bar {a}\):

Using (5), (6), (9), (21) and (40) we obtain that

$$ R(z,x_{m})=\frac{2\sqrt{1-\zeta^{2}}+1}{\sqrt{1-\zeta^{2}}+\zeta}\left\{\frac{\left( \frac{2\sqrt{1-\zeta^{2}}-1}{2\sqrt{ 1-\zeta^{2}}+1}\right)^{\frac{1+\zeta-\sqrt{1-\zeta^{2}}}{2}}-\left( \frac{2\sqrt{1-\zeta^{2}}-1}{2\sqrt{1-\zeta^{2}}+1} \right)^{\frac{3\zeta-\sqrt{1-\zeta^{2}}+1}{2}}}{[(1-y_{m})z+y_{m}]^{\frac{\zeta}{\sqrt{1-\zeta^{2}}+\zeta}}}\right\}. $$
(44)

Evaluating the last expression at z=0 we obtain

$$ R(0,x_{m})=\frac{2\sqrt{1-\zeta^{2}}+1}{\sqrt{1-\zeta^{2}}+\zeta}\left\{\frac{\left( \frac{2\sqrt{1-\zeta^{2}}-1}{2\sqrt{ 1-\zeta^{2}}+1}\right)^{\frac{1+\zeta-\sqrt{1-\zeta^{2}}}{2}}-\left( \frac{2\sqrt{1-\zeta^{2}}-1}{2\sqrt{1-\zeta^{2}}+1} \right)^{\frac{3\zeta-\sqrt{1-\zeta^{2}}+1}{2}}}{y_{m}^{\frac{\zeta}{\sqrt{1-\zeta^{2}}+\zeta}}}\right\} $$
(45)

where

$$ y_{m}=\left( \frac{2\sqrt{1-\zeta}-1}{2\sqrt{1-\zeta^{2}}+1}\right)^{\sqrt{1-\zeta^{2}}+\zeta}. $$
(46)

From (9) we obtain that

$$ \beta_{m}=\frac{1}{4}\frac{\left[\left( 2\sqrt{1-\zeta^{2}}+1\right)^{\zeta+\sqrt{1-\zeta^{2}}}-\left( 2\sqrt{1-\zeta^{2}} -1\right)^{\zeta+\sqrt{1-\zeta^{2}}}\right]^{2}}{(\sqrt{1-\zeta^{2}}+\zeta)^{2}(3-4\zeta^{2})^{\sqrt{1-\zeta^{2}} +\zeta-1}} $$
(47)

and taking into account (21) it is possible to express R(0,x m ) and β m and terms of the photon sphere as,

$$ R(0,x_{m})=\frac{2x_{m}}{k}\left( \left( 1-\frac{1}{x_{m}}\right)^{\frac{1-k}{2}}-\left( 1-\frac{1}{x_{m}}\right)^{\frac{k+1}{2}} \right). $$
(48)
$$ \beta_{m}=\frac{({x^{k}_{m}}-(x_{m}-1)^{k})^{2}}{k^{2}(x_{m}-1)^{k-1}x^{k-1}_{m}} $$
(49)

then, from (12)

$$ \bar{a}=\frac{x_{m}[x^{k-1}_{m}-(x_{m}-1)^{k}x^{-1}_{m}]}{{x^{k}_{m}}-(x_{m}-1)^{k}}=1. $$
(50)

1.2 Calculation of u m :

From (13) the impact parameter is calculated as,

$$ u_{m}=\sqrt{\frac{C(x_{m})}{A(x_{m})}}, $$
(51)

then, using (40), (21) and taking into account that A(x m ) = y m

$$ u_{m}=\frac{(x_{m}-1)^{\frac{1}{2}+\sqrt{1-\zeta^{2}}}}{x_{m}^{-\frac{1}{2}-\sqrt{1-\zeta^{2}}}}=\frac{1}{2}\frac{(2\sqrt{1-\zeta^ {2}}-1)^{\frac{1}{2}-\sqrt{1-\zeta^{2}}}}{(2\sqrt{1-\zeta^{2}}+1)^{-\frac{1}{2}-\sqrt{1-\zeta^{2}}}}. $$
(52)

1.3 Calculation of b R :

The term b R is calculated by (14), which corresponds to the regular part of the integral (10), i. e.,

$$ b_{R}=I_{R}(x_{m})={{\int}^{1}_{0}}g(z,x_{m})dz={{\int}^{1}_{0}}[R(z,x_{m})f(z,x_{m})-R(0,x_{m})f_{0}(z,x_{m})]dz. $$
(53)

However, as is pointed out in Ref. [8], b R can not be calculated analytically but by an expansion of I R (x m ) in powers of some metric’s parameter. In this sense, to calculate the regular term for Kar’s metric (17), we made and expansion of I R (x m ) in powers of ζ around ζ=0Footnote 3 and used the first order expansion as our b R . Mathematically this idea is

$$ b_{R}=\sum\limits_{n=0}^{\infty}\frac{1}{n!}\frac{d^{(n)}I_{R}(x_{m})}{d\zeta^{n}}(\zeta-0)^{n} $$
(54)

and taking terms up to first order in ζ we have thatFootnote 4

$$ I_{R}(x_{m})=I_{R}(x_{m})_{\zeta=0}+\left[\frac{dI_{R}(x_{m})}{d\zeta}\right]_{\zeta=0}\zeta. $$
(55)

In this sense, in order to calculate the regular term b R , it is necessary to find the functional form of R(z,x m ), f(z,x m ), R(0,x m ) and f 0(z,x m ). The form of R(z,x m ) and R(0,x m ) are already shown in (44) and (45). From (6), (7) and (22) we have that

$$ f(z,x_{m})=\frac{1}{\sqrt{y_{m}-[(1-y_{m})z+y_{m}]\frac{C_{m}}{C}}}\\ $$
(56)

and

$$ f_{0}(z,x_{m})=\frac{1}{\sqrt{\beta_{m}}|z|}=\frac{2(\sqrt{1-\zeta^{2}}+\zeta)(3-4\zeta^{2})^{\frac{\sqrt{1-\zeta^{2}}+\zeta-1}{2}}}{ (2\sqrt{1-\zeta^{2}}+1)^{\sqrt{1-\zeta}+\zeta}-(2\sqrt{1-\zeta^{2}}-1)^{\sqrt{1-\zeta}+\zeta}}\frac{1}{|z|}, $$
(57)

where

$$ C_{m}=\left[\frac{2\sqrt{1-\zeta^{2}}+1}{2}\right]^{2}\left[\frac{2\sqrt{1-\zeta^{2}}-1}{2\sqrt{1-\zeta^{2}}+1}\right]^{ 1+\zeta-\sqrt{1-\zeta^{2}}}, $$
(58)
$$ C=\frac{[(1-y_{m})z+y_{m}]^{\frac{1+\zeta-\sqrt{1-\zeta^{2}}}{\zeta+\sqrt{1-\zeta^{2}}}}}{[1-[(1-y_{m})z+y_{m}]^{\frac{1}{\zeta+\sqrt{ 1-\zeta^{2}}}}]^{2}}. $$
(59)

As (55) shows, the value of I R (x m ) reduces to that of Schwarzschild for ζ=0. Therefore, for 0≤z≤1 (|z| = z) we obtain

$$ I_{R}(x_{m})_{\zeta=0}=2{{\int}^{1}_{0}}\left[\frac{1}{|z|\sqrt{1-\frac{3}{2}z}}-\frac{1}{|z|}\right]dz=2\ln{6(2-\sqrt{3})}=0.9496. $$
(60)

On the other hand,

$$\begin{array}{@{}rcl@{}} \left[\frac{dI_{R}(x_{m})}{d\zeta}\right]_{\zeta=0}&=&{{\int}^{1}_{0}}\left[\frac{d}{d\zeta}(R(z,x_{m})f(z,x_{m}))-\frac{d}{d\zeta}(R(0, x_{m})f_{0}(z,x_{m}))\right]_{\zeta=0}dz\\ &=&{{\int}^{1}_{0}}[f(z,x_{m})\frac{d}{d\zeta}R(z,x_{m}) +R(z,x_{m})\frac{d}{d\zeta}f(z,x_{m})\\ &&-f_{0}(z,x_{m})\frac{d}{d\zeta}R(0,x_{m})-R(0,x_{m})\frac{d}{d\zeta}f_{0}(z,x_{m})]_{\zeta=0}dz\\ &=&{{\int}^{1}_{0}}[f_{S}(z,x_{m})\left[\frac{d}{d\zeta}R(z,x_{m})\right]_{\zeta=0} +2\left[\frac{d}{d\zeta}f(z,x_{m})\right]_{\zeta=0}\\ &&-f_{0S}(z,x_{m})\frac{d}{d\zeta}R(0,x_{m})-2\left[\frac{d}{d\zeta}f_{0}(z,x_{m})\right]]dz, \end{array} $$

where f S (z,x m ), f 0S (z,x m ) are those of Schwarzschild (Cfr. [8]). Therefore,

$$\begin{array}{@{}rcl@{}} \left[\frac{dI_{R}(x_{m})}{d\zeta}\right]_{\zeta=0}&=&{{\int}^{1}_{0}}[\frac{\left[\frac{d}{d\zeta}R(z,x_{m})\right]_{\zeta =0}}{z\sqrt{1-\frac{2}{3}z}}-\frac{\left[\frac{d}{d\zeta}R(0,x_{m})\right]_{\zeta=0}}{z}\\ &&+2\left[\frac{d}{d\zeta}f(z,x_{m})\right]_{\zeta=0}-2\frac{\left[\frac{d}{d\zeta}f_{0}(z,x_{m})\right]_{\zeta=0}}{z}]dz, \end{array} $$

where all derivatives, evaluated at ζ=0, are:

$$\begin{array}{@{}rcl@{}} \left[\frac{d}{d\zeta}R(z,x_{m})\right]_{\zeta=0}&=&-2-2\ln\left( \frac{2}{3}z+\frac{1}{3}\right)\\ \left[\frac{d}{d\zeta}R(0,x_{m})\right]_{\zeta=0}&=&-2+2\ln(3)\\ \left[\frac{d}{d\zeta}f_{0}(z,x_{m})\right]_{\zeta=0}&=&\frac{\ln(3)-1}{|z|}\\ \left[\frac{d}{d\zeta}f(z,x_{m})\right]_{\zeta=0}&=&-\frac{1}{2}\frac{\ln{(3)}\left[\frac{7}{3}z^{3}-2z^{2}\right] +z(2z+1)(1-z)\ln(2z+1)}{z^{3}(1-\frac{2}{3}z)^{\frac{3}{2}}}. \end{array} $$
(61)

Thus,

$$\begin{array}{@{}rcl@{}} \left[\frac{dI_{R}(x_{m})}{d\zeta}\right]_{\zeta=0}&=&{{\int}^{1}_{0}}\left[\frac{2-2\ln(3)}{z}-\frac{2+2\ln\left( \frac{2}{3}z+\frac{ 1}{3}\right)}{z\sqrt{1-\frac{2}{3}z}}\right]dz\\ &&+{{\int}^{1}_{0}}\left[\frac{\ln{(3)}\left[\frac{7}{3}z^{3}-2z^{2}\right]+z(2z+1)(1-z)\ln(2z+1)}{z^{3}(1-\frac{2}{3}z)^{\frac{3}{2}}} +\frac{2\ln(3)-2}{z}\right]dz\\ &=&{{\int}^{1}_{0}}\left[\frac{2-2\ln(3)}{z}-\frac{2+2\ln\left( \frac{2}{3}z+\frac{1}{3}\right)}{z\sqrt{1-\frac{2}{3}z}}\right] dz\\ &&+\underbrace{{{\int}^{1}_{0}}\left[\frac{-2\ln(3)z^{2}+z(2z+1)(1-z)\ln(2z+1)}{z^{3}(1-\frac{2}{3}z)^{\frac{3}{2}}}+\frac{2\ln(3)-2}{z }\right]dz}_{i}\\ &&+\frac{7\ln(3)}{3}{{\int}^{1}_{0}}\frac{dz}{\left( 1-\frac{2}{3}z\right)^{\frac{3}{2}}}. \end{array} $$
(62)

The latter integrals were calculated numerically as

$$\begin{array}{@{}rcl@{}} {{\int}^{1}_{0}}\left[\frac{-2\ln(3)z^{2}+z(2z+1)(1-z)\ln(2z+1)}{z^{3}(1-\frac{2}{3}z)^{\frac{3}{2}}}+\frac{2\ln(3)-2}{z}\right] dz&=&-2.3980,\\ {{\int}^{1}_{0}}\left[\frac{2-2\ln(3)}{z}-\frac{2+2\ln\left( \frac{2}{3}z+\frac{1}{3}\right)}{z\sqrt{1-\frac{2}{3}z}}\right] dz&=&-3.457723875,\\ \frac{7\ln(3)}{3}{{\int}^{1}_{0}}\frac{dz}{\left( 1-\frac{2}{3}z\right)^{\frac{3}{2}}}&=&\frac{14\sqrt{3}\ln(3)}{(3+\sqrt{3})}. \end{array} $$
(63)

Therefore, b R for Kar’s metric is

$$ b_{R}=2\ln(6(2-\sqrt{3}))-0.226\zeta. $$
(64)

Finally, the deflection angle for Kar’s metric is

$$ \hat{\alpha}=-\ln\left[\frac{\theta D_{OL}}{u_{m}}-1\right]+2\ln(6(2-\sqrt{3}))-0.226\zeta-\pi+\ln\left[\frac{2\beta_{m}}{y_{m}}\right], $$
(65)

where u m , β m and y m are given by (52), (22) and (46) respectively.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benavides, C.A., Cárdenas-Avendaño, A. & Larranaga, A. Gravitational Lensing in the Strong Field Limit for Kar’s Metric. Int J Theor Phys 55, 2219–2236 (2016). https://doi.org/10.1007/s10773-015-2861-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-015-2861-2

Keywords

Navigation