Skip to main content
Log in

Adjunctation and Scalar Product in the Dirac Equation - I

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The Bargmann-Pauli adjunctator (hermitiser) of \(\mathcal {C}{l}_{_{1,3}}(C)\) is derived in a representation independent way, circumventing the early derivations (Pauli, Ann. inst. Henri Poincaré 6, 109 and 121 1936) using representation-dependent arguments. Relations for the adjunctator’s transformation with the scalar product and space generator set are given. The S U(2) adjunctator is shown to determine the \(\mathcal {C}{l}_{_{1,3}}(C)\) adjunctator. Part-II of the paper will approach the problem of the two scalar products used in Dirac theory - an unphysical situation of “piece-wise physics” with erroneous results. The adequate usage of scalar product - via calibration - will be presented, in particular under boosts, yielding the known covariant transformations of physical quantities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. 1 Further more, while for real-space G Minkowski is unique, for quantum-space # #π# #=γ 0 is not unique in having this (convenient, but non-physical) property, # #π# #=γ 0(a+b γ 5) satisfying equally well.

References

  1. Pauli, W.: Ann. inst. Henri Poincaré 6, 109 and 121 (1936)

    Google Scholar 

  2. Mayeul, A., Frank, R.: Int. J. Geom. Meth. Mod. Phys. 9, 1250026 (2012)

    Article  Google Scholar 

  3. Mayeul, A., Frank, R.: Braz. J. Phys. 38, 248 (2008)

    Article  Google Scholar 

  4. Mayeul, A., Frank, R.: J. Phys. Conf. Ser. 306, 012061 (2011)

    Article  Google Scholar 

  5. Mayeul, A., Frank, R.: Annalen Phys. 523, 531 (2011)

    Article  Google Scholar 

  6. Commandant Benoit: Note sur une méthode de résolution des équations normales provenant de l’application de la méthode des moindres carrés à un système d’équations linéaires en nombre inférieur à celui des inconnues (Procédé du Commandant Cholesky), Bulletin Géodésique 2, 67 (1924)

  7. Supplee, J.M.: Am. J. Phys. 57, 75 (1989)

    Article  ADS  Google Scholar 

  8. Matsas, E.A.G.: Phys. Rev. D 68, 027701 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  9. Dima, M., Wang, D.: Int. J. Theor. Phys. 47, 1455 (2008)

  10. Dima, M.: JETP Lett 72, 541 (2000)

    Article  ADS  Google Scholar 

  11. Hafele, J.C., Keating, R.E.: Science 177, 166 (1972)

    Article  ADS  Google Scholar 

  12. Charles, M., Thorne, K.S., Wheeler, J.A.: Gravitation, p 170. W. H. Freeman., San Francisco

  13. Bargmann, V., Michel, L., Telegdi, V.L.: Phys. Rev. Lett. 2, 435 (1959)

    Article  ADS  Google Scholar 

  14. Pauli, W.: Ann. der Phys. 18, 337 (1933)

    Article  ADS  Google Scholar 

  15. Bargmann, V.: Berl. Ber., 345 (1932)

Download references

Acknowledgments

This work was supported by a Grant of the Romanian National Authority for Scientific Research, CNCS-UEFISCDI, Project no. PN-II-ID-PCE-2011-3-0323.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Dima.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dima, M. Adjunctation and Scalar Product in the Dirac Equation - I. Int J Theor Phys 55, 949–958 (2016). https://doi.org/10.1007/s10773-015-2739-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-015-2739-3

Keywords

Navigation