Skip to main content
Log in

Monoidal categorification and quantum affine algebras II

  • Published:
Inventiones mathematicae Aims and scope

Abstract

We introduce a new family of real simple modules over the quantum affine algebras, called the affine determinantial modules, which contains the Kirillov-Reshetikhin (KR)-modules as a special subfamily, and then prove T-systems among them which generalize the T-systems among KR-modules and unipotent quantum minors in the quantum unipotent coordinate algebras simultaneously. We develop new combinatorial tools: admissible chains of \(i\)-boxes which produce commuting families of affine determinantial modules, and box moves which describe the T-system in a combinatorial way. Using these results, we prove that various module categories over the quantum affine algebras provide monoidal categorifications of cluster algebras. As special cases, Hernandez-Leclerc categories \(\mathscr{C}_{{\mathfrak{g}}}^{0}\) and \(\mathscr{C}_{{\mathfrak{g}}}^{-}\) provide monoidal categorifications of the cluster algebras for an arbitrary quantum affine algebra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Akasaka, T., Kashiwara, M.: Finite-dimensional representations of quantum affine algebras. Publ. RIMS. Kyoto Univ. 33, 839–867 (1997)

    MathSciNet  Google Scholar 

  2. Bedard, R.: On commutation classes of reduced words in Weyl groups. Eur. J. Comb. 20, 483–505 (1999)

    MathSciNet  Google Scholar 

  3. Berenstein, A., Zelevinsky, A.: Quantum cluster algebras. Adv. Math. 195(2), 405–455 (2005)

    MathSciNet  Google Scholar 

  4. Chari, V., Pressley, A.: Quantum affine algebras. Commun. Math. Phys. 142(2), 261–283 (1991)

    MathSciNet  Google Scholar 

  5. Chari, V., Pressley, A.: A Guide to Quantum Groups. Cambridge University Press, Cambridge (1994). xvi+651 pp.

    Google Scholar 

  6. Chari, V., Pressley, A.: Quantum affine algebras and their representations. In: Representations of Groups, Banff, AB, 1994. CMS Conf. Proc., vol. 16, pp. 59–78. Am. Math. Soc., Providence (1995)

    Google Scholar 

  7. Chari, V., Pressley, A.: Twisted quantum affine algebras. Commun. Math. Phys. 196(2), 461–476 (1998)

    MathSciNet  Google Scholar 

  8. Date, E., Okado, M.: Calculation of excitation spectra of the spin model related with the vector representation of the quantized affine algebra of type \(A^{(1)}_{n}\). Int. J. Mod. Phys. A 9(3), 399–417 (1994)

    MathSciNet  Google Scholar 

  9. Fomin, S., Zelevinsky, A.: Cluster algebras I. Foundations. J. Am. Math. Soc. 15(2), 497–529 (2002)

    MathSciNet  Google Scholar 

  10. Frenkel, E., Reshetikhin, N.Y.: The q-characters of representations of quantum affine algebras and deformations of W-algebras, recent developments in quantum affine algebras and related topics. Contemp. Math. 248, 163–205 (1999)

    Google Scholar 

  11. Fujita, R.: Graded quiver varieties and singularities of normalized R-matrices for fundamental modules. Sel. Math. New Ser. 28, 2 (2022). https://doi.org/10.1007/s00029-021-00715-5

    Article  MathSciNet  Google Scholar 

  12. Fujita, R., Oh, S.-j.: Q-datum and representation theory of untwisted quantum affine algebras. Commun. Math. Phys. 384(2), 1351–1407 (2021)

    Google Scholar 

  13. Fujita, R., Hernandez, D., Oh, S.-j., Oya, H.: Isomorphisms among quantum Grothendieck rings and propagation of positivity. J. Reine Angew. Math. (2022). https://doi.org/10.1515/crelle-2021-0088

    Article  MathSciNet  Google Scholar 

  14. Geiß, C., Leclerc, B., Schröer, J.: Kac-Moody groups and cluster algebras. Adv. Math. 228(1), 329–433 (2011)

    MathSciNet  Google Scholar 

  15. Geiß, C., Leclerc, B., Schröer, J.: Cluster structures on quantum coordinate rings. Sel. Math. New Ser. 19(2), 337–397 (2013)

    MathSciNet  Google Scholar 

  16. Geiß, C., Leclerc, B., Schröer, J.: Factorial cluster algebras. Doc. Math. 18, 249–274 (2013)

    MathSciNet  Google Scholar 

  17. Glick, M., Rupel, D.: Introduction to cluster algebras, symmetries and integrability of difference equations. In: CRM Ser. Math. Phys., pp. 325–357. Springer, Cham (2017)

    Google Scholar 

  18. Hernandez, D.: The Kirillov-Reshetikhin conjecture and solutions of T-systems. J. Reine Angew. Math. 596, 63–87 (2006)

    MathSciNet  Google Scholar 

  19. Hernandez, D.: Kirillov-Reshetikhin conjecture: the general case. Int. Math. Res. Not. 1, 149–193 (2010)

    MathSciNet  Google Scholar 

  20. Hernandez, D., Leclerc, B.: Cluster algebras and quantum affine algebras. Duke Math. J. 154(2), 265–341 (2010)

    MathSciNet  Google Scholar 

  21. Hernandez, D., Leclerc, B.: Quantum Grothendieck rings and derived Hall algebras. J. Reine Angew. Math. 701, 77–126 (2015)

    MathSciNet  Google Scholar 

  22. Hernandez, D., Leclerc, B.: A cluster algebra approach to q-characters of Kirillov-Reshetikhin modules. J. Eur. Math. Soc. 18(5), 1113–1159 (2016)

    MathSciNet  Google Scholar 

  23. Hernandez, D., Oya, H.: Quantum Grothendieck ring isomorphisms, cluster algebras and Kazhdan-Lusztig algorithm. Adv. Math. 347, 192–272 (2019)

    MathSciNet  Google Scholar 

  24. Inoue, R., Iyama, O., Kuniba, A., Nakanishi, T., Suzuki, J.: Periodicities of T-systems and Y-systems. Nagoya Math. J. 197(1), 59–174 (2010)

    MathSciNet  Google Scholar 

  25. Inoue, R., Iyama, O., Keller, B., Kuniba, A., Nakanishi, T.: Periodicities of T and Y-systems, dilogarithm identities, and cluster algebras I: type \(B_{r}\). Publ. Res. Inst. Math. Sci. 49(1), 1–42 (2013)

    MathSciNet  Google Scholar 

  26. Inoue, R., Iyama, O., Keller, B., Kuniba, A., Nakanishi, T.: Periodicities of T and Y-systems, dilogarithm identities, and cluster algebras II: type \(C_{r}\), \(F_{4}\), and \(G_{2}\). Publ. Res. Inst. Math. Sci. 49(1), 43–85 (2013)

    MathSciNet  Google Scholar 

  27. Kac, V.: Infinite Dimensional Lie Algebras, 3rd edn. Cambridge University Press, Cambridge (1990)

    Google Scholar 

  28. Kang, S.-J., Kashiwara, M., Kim, M.: Symmetric quiver Hecke algebras and \(R\)-matrices of quantum affine algebras II. Duke Math. J. 164(8), 1549–1602 (2015)

    MathSciNet  Google Scholar 

  29. Kang, S.-J., Kashiwara, M., Kim, M., Oh, S.-j.: Simplicity of heads and socles of tensor products. Compos. Math. 151(2), 377–396 (2015)

    MathSciNet  Google Scholar 

  30. Kang, S.-J., Kashiwara, M., Kim, M., Oh, S.-j.: Symmetric quiver Hecke algebras and \(R\)-matrices of quantum affine algebras III. Proc. Lond. Math. Soc. 111, 420–444 (2015)

    MathSciNet  Google Scholar 

  31. Kang, S.-J., Kashiwara, M., Kim, M., Oh, S.-j.: Symmetric quiver Hecke algebras and R-matrices of quantum affine algebras IV. Sel. Math. New Ser. 22, 1987–2015 (2016)

    MathSciNet  Google Scholar 

  32. Kang, S.-J., Kashiwara, M., Kim, M.: Symmetric quiver Hecke algebras and \(R\)-matrices of quantum affine algebras. Invent. Math. 211(2), 591–685 (2018)

    MathSciNet  Google Scholar 

  33. Kang, S.-J., Kashiwara, M., Kim, M., Oh, S.-j.: Monoidal categorification of cluster algebras. J. Am. Math. Soc. 31(2), 349–426 (2018)

    MathSciNet  Google Scholar 

  34. Kashiwara, M.: On level zero representations of quantum affine algebras. Duke Math. J. 112, 117–175 (2002)

    MathSciNet  Google Scholar 

  35. Kashiwara, M., Kim, M.: Laurent phenomenon and simple modules of quiver Hecke algebras. Compos. Math. 155(12), 2263–2295 (2019)

    MathSciNet  Google Scholar 

  36. Kashiwara, M., Oh, S.-j.: Categorical relations between Langlands dual quantum affine algebras: doubly laced types. J. Algebraic Comb. 49, 401–435 (2019)

    MathSciNet  Google Scholar 

  37. Kashiwara, M., Kim, M., Oh, S.-j., Park, E.: Monoidal categories associated with strata of flag manifolds. Adv. Math. 328, 959–1009 (2018)

    MathSciNet  Google Scholar 

  38. Kashiwara, M., Kim, M., Oh, S.-j.: Monoidal categories of modules over quantum affine algebras of type A and B. Proc. Lond. Math. Soc. 118, 43–77 (2019)

    MathSciNet  Google Scholar 

  39. Kashiwara, M., Kim, M., Oh, S.-j., Park, E.: Monoidal categorification and quantum affine algebras. Compos. Math. 156(5), 1039–1077 (2020)

    MathSciNet  Google Scholar 

  40. Kashiwara, M., Kim, M., Oh, S.-j., Park, E.: Categories over quantum affine algebras and monoidal categorification. Proc. Jpn. Acad., Ser. A, Math. Sci. 97(7), 39–44 (2021). arXiv:2005.10969v1

    MathSciNet  Google Scholar 

  41. Kashiwara, M., Kim, M., Oh, S.-j., Park, E.: Simply-laced root systems arising from quantum affine algebras. Compos. Math. 156(1), 168–210 (2022)

    MathSciNet  Google Scholar 

  42. Kashiwara, M., Kim, M., Oh, S.-j., Park, E.: PBW theory for quantum affine algebras. J. Eur. Math. Soc. (2023). https://doi.org/10.4171/JEMS/1323

    Article  Google Scholar 

  43. Khovanov, M., Lauda, A.D.: A diagrammatic approach to categorification of quantum groups I. Represent. Theory 13, 309–347 (2009)

    MathSciNet  Google Scholar 

  44. Kimura, Y.: Quantum unipotent subgroup and dual canonical basis. Kyoto J. Math. 52(2), 277–331 (2012)

    MathSciNet  Google Scholar 

  45. Kirillov, A., Thind, J.: Coxeter elements and periodic Auslander-Reiten quiver. J. Algebra 323(5), 1241–1265 (2010)

    MathSciNet  Google Scholar 

  46. Kuniba, A., Nakanishi, T., Suzuki, J.: Functional relations in solvable lattice models. I. Funtional relations and representation theory. Int. J. Mod. Phys. A 9(30), 5215–5266 (1994)

    Google Scholar 

  47. Leclerc, B.: Cluster algebras and representation theory. In: Proceedings of the International Congress of Mathematicians 2010 (ICM 2010) (in 4 Volumes) Vol. I: Plenary Lectures and Ceremonies Vols. II–IV: Invited Lectures, pp. 2471–2488 (2010)

    Google Scholar 

  48. Marsh, R.J.: Lecture notes on cluster algebras. AMC 10, 12 (2014)

    Google Scholar 

  49. Nakajima, H.: t-analogs of q-characters of Kirillov-Reshetikhin modules of quantum affine algebras. Represent. Theory 7, 259–274 (2003)

    MathSciNet  Google Scholar 

  50. Nakajima, H.: Quiver varieties and t-analogs of q-characters of quantum algebras. Ann. Math. 160, 1057–1097 (2004)

    MathSciNet  Google Scholar 

  51. Nakajima, H.: Extremal weight modules of quantum affine algebras. In: Representation Theory of Algebraic Groups and Quantum Groups. Adv. Stud. Pure Math., vol. 40, pp. 343–369. Math. Soc. Japan, Tokyo (2004)

    Google Scholar 

  52. Nakajima, H.: Quiver varieties and cluster algebras. Kyoto J. Math. 51(1), 71–126 (2011)

    MathSciNet  Google Scholar 

  53. Naoi, K.: Equivalence via generalized quantum affine Schur-Weyl duality (2021). arXiv:2101.03573

  54. Oh, S.-j.: The denominators of normalized R-matrices of types \(A^{(2)}_{2n-1}\), \(A^{(2)}_{2n}\), \(B^{(1)}_{n}\) and \(D^{(2)}_{n+1}\). Publ. RIMS Kyoto Univ. 51, 709–744 (2015)

    Google Scholar 

  55. Oh, S.-j., Scrimshaw, T.: Categorical relations between Langlands dual quantum affine algebras: exceptional cases. Commun. Math. Phys. 368(1), 295–367 (2019)

    MathSciNet  Google Scholar 

  56. Oh, S.-j., Scrimshaw, T.: Simplicity of tensor products of Kirillov–Reshetikhin modules: nonexceptional affine and G types. arXiv:1910.10347

  57. Oh, S.-j., Suh, U.: Twisted and folded Auslander-Reiten quiver and applications to the representation theory of quantum affine algebras. J. Algebr. 535, 53–132 (2019)

    MathSciNet  Google Scholar 

  58. Okado, M., Schilling, A.: Existence of Kirillov-Reshetikhin crystals for nonexceptional types. Represent. Theory 12, 186–207 (2008)

    MathSciNet  Google Scholar 

  59. Qin, F.: Triangular bases in quantum cluster algebras and monoidal categorification conjectures. Duke Math. J. 166(12), 2337–2442 (2017)

    MathSciNet  Google Scholar 

  60. Rouquier, R.: 2 Kac-Moody algebras (2008). arXiv:0812.5023

  61. Rouquier, R.: Quiver Hecke algebras and 2-Lie algebras. Algebra Colloq. 19(2), 359–410 (2012)

    MathSciNet  Google Scholar 

  62. Varagnolo, M., Vasserot, E.: Standard modules of quantum affine algebras. Duke Math. J. 111(3), 509–533 (2002)

    MathSciNet  Google Scholar 

  63. Varagnolo, M., Vasserot, E.: Canonical bases and KLR algebras. J. Reine Angew. Math. 659, 67–100 (2011)

    MathSciNet  Google Scholar 

  64. Williams, L.: Cluster algebras: an introduction. Bull. Am. Math. Soc. 51(1), 1–26 (2014)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The second, third and fourth authors gratefully acknowledge for the hospitality of RIMS (Kyoto University) during their visit in 2020.

Funding

The research of M. Kashiwara was supported by Grant-in-Aid for Scientific Research (B) 23K20206, Japan Society for the Promotion of Science.

The research of M. Kim was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government(MSIT) NRF-2022R1F1A1076214 and NRF-2020R1A5A1016126.

The research of S.-j. Oh was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government(MSIT) (NRF-2022R1A2C1004045).

The research of E. Park was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea Government(MSIT)(RS-2023-00273425 and NRF-2020R1A5A1016126).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Se-jin Oh.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kashiwara, M., Kim, M., Oh, Sj. et al. Monoidal categorification and quantum affine algebras II. Invent. math. 236, 837–924 (2024). https://doi.org/10.1007/s00222-024-01249-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-024-01249-1

Mathematics Subject Classification

Navigation