Skip to main content
Log in

Experimental Study on Condensation Heat Transfer of Ethanol–Water Vapor Mixtures on Vertical Micro-tubes

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The paper presents an experimental investigation of Marangoni condensation heat transfer of ethanol–water vapor mixtures on vertical micro-tubes with an outer diameter of 0.793 mm, 1.032  mm, and 1.221 mm. Experiments were performed over a wide range of ethanol mass fractions in vapor mixtures for different vapor velocities and pressures. Condensation heat transfer coefficients behaved nonlinear characteristics, increased, and then decreased with increasing vapor-to-surface temperature difference. Under the same experimental conditions, the condensation heat transfer coefficient at a 2 % ethanol mass fraction in vapor was the highest. At low ethanol mass fractions, the condensation heat transfer coefficient of the ethanol–water vapor mixture was 2 to 3 times greater than that for pure steam. The effect of vapor pressure and velocity on condensation heat transfer suggested a positive tendency on each micro-tube for all vapor mixtures with different ethanol mass fraction. Results showed that condensation heat transfer coefficients on micro-tubes with a diameter of 1.032 mm were higher than those on the other two micro-tubes, suggesting that there existed a critical diameter which gave the largest condensation heat transfer coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

A:

Outside heat transfer area of micro-tube \((\hbox {m}^{2})\)

\(C\) :

Vapor mass fraction of ethanol (%)

\(C_{p}\) :

Isobaric specific heat \((\hbox {J}{\cdot } \hbox {kg}^{-1}{\cdot } \hbox {K}^{-1})\)

\(d_{\mathrm{i}}\) :

Inner diameter (m)

\(d_{\mathrm{o}}\) :

Outer diameter (m)

\(h\) :

Condensation heat transfer coefficient \((\hbox {kW} {\cdot } \hbox {m}^{-2}{\cdot } \hbox {K}^{-1})\)

\(h_{\mathrm{i}}\) :

Convective heat transfer coefficient \((\hbox {kW} {\cdot } \hbox {m}^{-2}{\cdot } \hbox {K}^{-1})\)

\(k\) :

Overall heat transfer coefficient \((\hbox {kW}{\cdot } \hbox {m}^{-2}{\cdot } \hbox {K}^{-1})\)

\(l\) :

Micro-tube length (mm)

\(P\) :

Pressure (kPa)

\(P{r}\) :

Prandtl number (dimensionless)

\(q\) :

Heat transfer flux \((\hbox {kW}{\cdot } \hbox {m}^{-2})\)

\(q_{\mathrm{v}}\) :

Volumetric flow rate

\(T\) :

Temperature (K)

\(\Delta T\) :

Vapor-to-surface temperature difference (K)

\(\Delta t_\mathrm{m}\) :

Logarithmic mean temperature difference (K)

\(Re\) :

Reynolds number (dimensionless)

\(R\) :

Thermal resistance \((\hbox {m}^{2} {\cdot } \hbox {K}{\cdot } \hbox {W}^{-1}\))

\(U\) :

Vapor velocity \((\hbox {m}{\cdot } \hbox {s}^{-1})\)

\(\lambda \) :

Thermal conductivity \((\hbox {W}{\cdot } \hbox {m}^{-1}{\cdot } \hbox {K}^{-1})\)

\(\rho \) :

Density of condensate \((\hbox {kg}{\cdot } \hbox {m}^{-3})\)

\(\varPhi \) :

Heat transfer rate (kW)

i:

Inlet

o:

Outlet

sat:

Saturated

References

  1. V.V. Mirkovich, R.W. Missen, Can. J. Chem. Eng. 39, 86 (1961)

    Article  Google Scholar 

  2. J.D. Ford, R.W. Missen, Can. J. Chem. Eng. 48, 309 (1968)

    Article  Google Scholar 

  3. K. Hijikata, O. Nakabeppu, Y. Fukasaku, in Proceedings of 29th Japan Heat Transfer Symposium (Tokyo, 1992), pp. 742–743

  4. T. Fujii, N. Osa, N.S. Koyama, in Proceedings of US Eng. Found. Conf. (Tucson, AZ, 1993), pp. 171–182

  5. J.N.A. Morrison, J. Deans, Int. J. Heat Mass Transfer 40, 765 (1997)

    Article  Google Scholar 

  6. J.N.A. Morrison, C. Philpott, J. Deans, Int. J. Heat Mass Transfer 41, 3679 (1998)

    Article  Google Scholar 

  7. K.J. Kim, A.M. Lefsaker, A. Razani, A. Stone, Appl. Therm. Eng. 21, 1863 (2001)

    Article  Google Scholar 

  8. Y. Utaka, S.X. Wang, Trans. JSRAE 18, 127 (2001)

    Google Scholar 

  9. C. Philpott, J. Deans, Int. J. Heat Mass Transfer 47, 3683 (2004)

    Article  Google Scholar 

  10. C. Philpott, J. Deans, ASME J. Heat Transfer 126, 529 (2004)

    Article  Google Scholar 

  11. Y. Utaka, S.X. Wang, Int. J. Heat Mass Transfer 47, 4507 (2004)

    Article  Google Scholar 

  12. T. Murase, H.S. Wang, J.W. Rose, Int. J. Heat Mass Transfer 50, 3774 (2007)

    Article  Google Scholar 

  13. J.J. Yan, Y.S. Yang, S.H. Hu, K.J. Zhen, J.P. Liu, Heat Mass Transfer 44, 51 (2007)

    Article  ADS  Google Scholar 

  14. S.H. Hu, J.J. Yan, J.S. Wang, Y. Li, J.P. Liu, Int. J. Multiphase Flow 33, 935 (2007)

    Article  Google Scholar 

  15. Y.S. Yang, J.J. Yan, X.Z. Wu, J. Thermophys. Heat Transfer 22, 247 (2008)

    Article  Google Scholar 

  16. Y. Li, J.J. Yan, L. Qiao, S.H. Hu, Heat Mass Transfer 44, 607 (2008)

    Article  ADS  Google Scholar 

  17. J.S. Wang, J.J. Yan, Y. Li, S.H. Hu, Heat Mass Transfer 45, 1533 (2009)

    Article  ADS  Google Scholar 

  18. J.S. Wang, J.J. Yan, S.H. Hu, J.P. Liu, Int. J. Heat Mass Transfer 52, 2324 (2009)

    Article  Google Scholar 

  19. J.J. Yan, J.S. Wang, S.H. Hu, J. Enhanced Heat Transfer 18, 352 (2011)

    Article  Google Scholar 

  20. Y. Li, J.J. Yan, J.S. Wang, G.X. Wang, ASME J. Heat Transfer 113, 061501 (2011)

    Article  Google Scholar 

  21. A. Fredenlund, R.L. Jones, J.M. Prausnitz, AIChE J. 27, 1086 (1975)

  22. V. Gnielinski, Forsch. Ingenieurwes. 61, 240 (1995)

    Article  Google Scholar 

  23. R.J. Moffat, Exp. Therm. Fluid Sci. 1, 3 (1988)

    Article  ADS  Google Scholar 

  24. W. Nusselt, Zeit VDI 60, 541 (1916)

    Google Scholar 

  25. W.M. Rohsenow, Appl. Mech. Rev. 23, 487 (1970)

    Google Scholar 

  26. B.X. Wang, X.Z. Du, Int. J. Heat Mass Transfer 43, 1391 (2000)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The authors greatly appreciate Prof. Y. Utaka at Yokohama National University for his experimental assistance and academic discussion. The work was financially supported by the National Natural Science Foundation of China Nos. 51206133 and 51125027.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinshi Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Wang, J., Qin, J. et al. Experimental Study on Condensation Heat Transfer of Ethanol–Water Vapor Mixtures on Vertical Micro-tubes. Int J Thermophys 36, 1598–1617 (2015). https://doi.org/10.1007/s10765-015-1898-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-015-1898-z

Keywords

Navigation