Skip to main content
Log in

Effects of vapor pressure/velocity and concentration on condensation heat transfer for steam–ethanol vapor mixture

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

When a steam–ethanol vapor mixture condenses on a vertical flat plate, the form of the condensate film changes and many drops are created. This non-film condensation is called pseudo-dropwise or Marangoni condensation. This paper aims to study the main influencing factors on the Marangoni condensation of steam–ethanol vapor.The factors include the ethanol concentration, vapor pressure, vapor velocity and vapor-to-surface temperature difference. The experiments show that the heat transfer coefficient has a maximum value of approximately 42 kW/m2 K when the ethanol concentration is 1%. At the low concentrations of 0.5, 1, 5.1 and 9.8%, the condensation heat transfer is greater than for pure steam. In addition, the heat transfer for all vapor mixtures increases with both the rise of vapor pressure and vapor velocity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

A :

area (m2)

c :

ethanol mass fraction (mass %)

F :

enhancement ratio of heat transfer

h :

heat transfer coefficient (kW/m2  K)

M :

molar mass (kg/mol)

\({{\mathop M\limits^ \bullet}}\) :

mass flow rate (kg/s)

\({{\mathop {M_{\rm V}}\limits^ \bullet}}\) :

mass flow rate of vapor \({{\mathop M\limits^ \bullet}_{\rm V} = v A_{{\sec}} \rho _{V}}\)

\({{\mathop {M_{\rm L}}\limits^ \bullet}}\) :

mass flow rate of liquid \({{\mathop M \limits^ \bullet}_{{\rm L}} = q A_{{\rm sur}} /r}\)

P :

pressure (kPa)

q :

heat flux (kW/m2)

r :

latent heat (kJ/kg)

R :

thermal resistance (m2  K/kW)

T :

temperature (K)

\({{\mathop {T_{\rm {L}}}\limits^{\_\_}}}\) :

average temperature of condensation liquid \({{\mathop {T_{\rm {L}}}\limits^{\_\_}} = (T_{\rm {V}} + T_{\rm {{sur}}})/2}\)

v :

velocity (m/s)

x :

liquid mole fraction

y :

vapor mole fraction

δ:

thickness of block and distance between two thermocouples in block (m)

λ:

heat conductivity (kW/mK)

ν:

kinematic viscosity (m2/s)

ρ:

density (kg/m3)

ρV mix :

density of vapor mixture ρ mixV =  ρ eV c + ρ sV (1 − c)

σ:

surface tension, interfacial tension (N/m)

avg:

average

diff:

diffusion layer

e:

ethanol

w:

water

V:

vapor

L:

liquid

sur:

surface

i:

interfacial

mix:

mixture

sat:

saturation

sec:

cross section

References

  1. Scriven LE, Sternling CV (1960) The Marangoni effects. Nature 187:186–188

    Article  Google Scholar 

  2. Mirkovich VV, Missen R W (1961) Non-Filmwise Condensation of Binary Vapors of Miscible Liquids. Can J Chem Eng 39:86–87

    Google Scholar 

  3. Mirkovich VV, Missen RW (1963) A study of the condensation of binary vapors of miscible liquids. Part 2: heat transfer coefficients for filmwise and non-filmwise condensation. Can J Chem Eng 41:73–78

    Google Scholar 

  4. Ford JD, Missen RW (1968) On the conditions for stability of falling films subject to surface tension disturbances; the condensation of binary vapors. Can J Chem Eng 48:309–312

    Article  Google Scholar 

  5. Fujii T, Koyama S (1989) Gravity controlled condensation of an ethanol and water mixture on a horizontal tube. Trans JSME Ser B 55(509):210–217

    Google Scholar 

  6. Hijikata K, Nakabeppu O, Fukasaku Y (1992) Condensation characteristics of a water–ethanol binaryvapor mixture. Proc 29th Jpn Heat Transf Symp 742–743

  7. Hijikata K, Fukasaku Y, Nakabeppu O (1996) Theoretical and experimental studies on the pseudo-dropwise condensation of a binary vapor mixture. J Heat Transfer 118:140–147

    Google Scholar 

  8. Utaka Y, Wang Shixue (2004) Characteristic curves and the promotion effect of ethanol addition on steam condensation heat transfer. Int J Heat Mass Transf 47:4507–4516

    Article  Google Scholar 

  9. Wang Shixue, Utaka Y (2004) An effect of non-condensable gas mass fraction on condensation heat transfer for steam–ethanol vapor mixture. JSME Int J Ser B 47(2):162–167

  10. Morrison JNA, Deans J (1997) Augmentation of steam condensation heat transfer by addition of ammonia. Int J Heat Mass Transf 40(4):765–772

    Article  Google Scholar 

  11. Philpott C, Deans J (2004) The condensation of ammonia–water mixtures in a horizontal shell and tube condenser. J Heat Transf 126:527–534

    Article  Google Scholar 

  12. Kim KJ, Lefsaker AM, Razani A, Stone A (2001) The effective use of heat transfer additives for steam condensation. Appl Therm Eng 21:1863–1874

    Article  Google Scholar 

  13. He Yangpeng, Yan Junjie et al (2004) Research on Marangoni condensation heat transfer for water and ethanol mixture vapor. Chin J Eng Thermophys 25(1):77–80

    Google Scholar 

  14. Claudio AF, Valderrama JO (2004) Phase equilibrium modeling in binary mixtures found in wine and must distillation. J Food Eng 65:577–583

    Article  Google Scholar 

  15. Fredenlund Aa, Jones R L, Prausnitz JM (1975) Group contribution estimation of activity coefficients in non-ideal liquid mixtures. AIChE J 27(5):1086–1099

  16. Gmehling J (1978) Vapor–liquid equilibrium data collection: organic hydroxy compounds: alcohol and phenols. Chemistry data series, 1, Part 2a, Frankfurt

  17. Moffat RJ (1982) Contributions to the theory of single-sample uncertainty analysis. J Fluids Eng Trans ASME 104(2):250–260

    Article  Google Scholar 

Download references

Acknowldgments

This project has been supported by National Natural Science Foundation of China through grants No.50476048 and No.50323001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junjie Yan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, J., Yang, Y., Hu , S. et al. Effects of vapor pressure/velocity and concentration on condensation heat transfer for steam–ethanol vapor mixture. Heat Mass Transfer 44, 51–60 (2007). https://doi.org/10.1007/s00231-006-0216-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-006-0216-5

Keywords

Navigation