Skip to main content
Log in

The Complexity of the Affordance–Ability Relationship When Second-Grade Children Interact with Mathematics Virtual Manipulative Apps

  • Original research
  • Published:
Technology, Knowledge and Learning Aims and scope Submit manuscript

Abstract

The purpose of this study was to explore relationships between app affordances and user abilities in second graders’ interactions with mathematics virtual manipulative touchscreen tablet apps. The research questions focused on varying manifestations of affordance–ability relationships during children’s interactions with mathematics virtual manipulative touchscreen tablet apps. Researchers qualitatively analyzed video recordings and ethograms from clinical interviews of 33 second-grade children. Each 45-min clinical interview involved one child interacting with two sequences of mathematics virtual manipulative touchscreen tablet apps: one sequence focusing on place value concepts and the other sequence focusing on skip counting concepts. Results provided evidence of Moyer-Packenham and Westenskow’s (Int J Virtual Pers Learn Environ 4(3):35–50, 2013) five affordance categories of virtual manipulatives. Approach to and degree of affordance access varied depending on a child’s corresponding ability, and some children modified their affordance access as their ability changed. Results also indicated that outcomes of accessing an affordance also related to a child’s ability. Context also influenced affordance access. These results imply that affordance–ability relationships are multifaceted. Overall, these results imply that is important to consider affordance–ability relationships in relation to mathematics education technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alibali, M. W., & Nathan, M. J. (2012). Embodiment in mathematics teaching and learning: Evidence from learners’ and teachers’ gestures. Journal of the Learning Sciences, 21(2), 247–286. doi:10.1080/10508406.2011.611446.

    Article  Google Scholar 

  • Baccaglini-Frank, A., & Maracci, M. (2015). Multi-touch technology and preschoolers’ development of number-sense. Digital Experiences in Mathematics Education, 1(1), 7–27. doi:10.1007/s40751-015-0002-4.

    Article  Google Scholar 

  • Barendregt, W., Lindström, B., Rietz-Leppänen, E., Holgersson, I., & Ottosson, T. (2012). Development and evaluation of Fingu: A mathematics iPad game using multi-touch interaction. In H. Schelhowe (Ed.), Proceedings of the 11th international conference on interaction design and children (pp. 204–207). New York, NY: ACM. doi:10.1145/2307096.2307126.

    Chapter  Google Scholar 

  • Bartoschek, T., Schwering, A., Li, R., & Münzer, S. (2013). Ori-Gami: An App fostering spatial competency development and spatial learning of children. In D. Vandenbroucke, B. Bucher, & J. Crompvoets (Eds.), Proceedings of the 15th AGILE international conference on geographic information science. Leuven: Springer.

    Google Scholar 

  • Burlamaqui, L., & Dong, A. (2014). The use and misuse of the concept of affordance. In J. S. Gero (Ed.), Design computing and cognition DCC’14 (pp. 1–20). London: Springer.

    Google Scholar 

  • Burlamaqui, L., & Dong, A. (2015). The identification of perceived intended affordances. In V. Popovic, A. L. Blackler, D.-B. Luh, N. Nimkulrat, B. Kraal, & Y. Nagai (Eds.), IASDR2015 Interplay (pp. 266–280). Australia: Brisbane.

    Google Scholar 

  • Chemero, A. (2003). An outline of a theory of affordances. Ecological Psychology, 15(2), 181–195. doi:10.1207/S15326969ECO1502_5.

    Article  Google Scholar 

  • Gaver, W. W. (1991). Technology affordances. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 79–84). New York, NY, USA: ACM. doi:10.1145/108844.108856

  • Gibson, J. J. (1986). The ecological approach to visual perception. Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Ginsburg, H. P., & Pappas, S. (2004). SES, ethnic, and gender differences in young children’s informal addition and subtraction: A clinical interview investigation. Journal of Applied Developmental Psychology, 25(2), 171–192. doi:10.1016/j.appdev.2004.02.003.

    Article  Google Scholar 

  • Greene, J. C. (2007). Mixed methods in social inquiry. New York: Wiley.

    Google Scholar 

  • Greeno, J. G. (1994). Gibson’s affordances. Psychological Review, 101(2), 336–342. doi:10.1037/0033-295X.101.2.336.

    Article  Google Scholar 

  • Ladel, S., & Kortenkamp, U. (2012). Early maths with multi-touch—an activity-theoretic approach. In Proceedings of POEM 2012. http://cermat.org/poem2012/main/proceedings_files/Ladel-Kortenkamp-POEM2012.pdf

  • MacNulty, D. R., Mech, L. D., & Smith, D. W. (2007). A proposed ethogram of large-carnivore predatory behavior, exemplified by the wolf. Journal of Mammalogy, 88(3), 595–605. doi:10.1644/06-MAMM-A-119R1.1.

    Article  Google Scholar 

  • McLeod, J., Vasinda, S., & Dondlinger, M. J. (2012). Conceptual visibility and virtual dynamics in technology-scaffolded learning environments for conceptual knowledge of mathematics. Journal of Computers in Mathematics and Science Teaching, 31(3), 283–310.

    Google Scholar 

  • Miles, M. B., Huberman, A. M., & Saldaña, J. (2013). Qualitative data analysis: A methods sourcebook (3rd ed.). Thousand Oaks, CA: Sage.

    Google Scholar 

  • Moyer, P. S., Bolyard, J. J., & Spikell, M. A. (2002). What are virtual manipulatives? Teaching Children Mathematics, 8(6), 372–377.

    Google Scholar 

  • Moyer-Packenham, P. S., Anderson, K. L., Shumway, J. F., Tucker, S. I., Westenskow, A., Boyer-Thurgood, J. M., et al. (2014). Developing research tools for young children’s interactions with mathematics apps on the iPad. In Proceedings of the 12th annual hawaii international conference on education (HICE) (pp. 1685–1694). Honolulu, Hawaii.

  • Moyer-Packenham, P. S., Baker, J., Westenskow, A., Anderson, K. L., Shumway, J. F., & Jordan, K. E. (2014b). Predictors of achievement when virtual manipulatives are used for mathematics instruction. REDIMAT - Journal of Research in Mathematics Education, 3(2), 121–150. doi:10.4471/redimat.

    Google Scholar 

  • Moyer-Packenham, P. S., Bullock, E. P., Shumway, J. F., Tucker, S. I., Watts, C., Westenskow, A., et al. (2016). The role of affordances in children’s learning performance and efficiency when using virtual manipulatives mathematics iPad apps. Mathematics Education Research Journal,. doi:10.1007/s13394-015-0161-z.

    Google Scholar 

  • Moyer-Packenham, P. S., Shumway, J. F., Bullock, E., Tucker, S. I., Anderson-Pence, K. L., Westenskow, A., et al. (2015). Young children’s learning performance and efficiency when using virtual manipulative mathematics iPad apps. Journal of Computers in Mathematics and Science Teaching, 34(1), 41–69.

    Google Scholar 

  • Moyer-Packenham, P. S., & Suh, J. M. (2012). Learning mathematics with technology: The influence of virtual manipulatives on different achievement groups. Journal of Computers in Mathematics & Science Teaching, 31(1), 39–59.

    Google Scholar 

  • Moyer-Packenham, P. S., & Westenskow, A. (2013). Effects of virtual manipulatives on student achievement and mathematics learning. International Journal of Virtual and Personal Learning Environments, 4(3), 35–50.

    Article  Google Scholar 

  • Moyer-Packenham, P. S., & Westenskow, A. (2016). Revisiting the effects and affordances of virtual manipulatives for mathematics learning. In K. Terry & A. Cheney (Eds.), Utilizing virtual and personal learning environments for optimal learning (pp. 186–215). Hershey, PA: Information Science Reference. doi:10.4018/978-1-4666-8847-6.ch009.

    Chapter  Google Scholar 

  • Murray, T., & Arroyo, I. (2002). Toward measuring and maintaining the Zone of Proximal Development in adaptive instructional systems. In S. A. Cerri, G. Gouardères, & F. Paraguaçu (Eds.), Intelligent tutoring systems (pp. 749–758). Berlin: Springer. doi:10.1007/3-540-47987-2_75.

    Chapter  Google Scholar 

  • National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics. Reston, VA: National Council of Teachers of Mathematics. http://www.nctm.org/standards/content.aspx?id=26792

  • Nemirovsky, R., Kelton, M. L., & Rhodehamel, B. (2013). Playing mathematical instruments: Emerging perceptuomotor integration with an interactive mathematics exhibit. Journal for Research in Mathematics Education, 44(2), 372–415. doi:10.5951/jresematheduc.44.2.0372.

    Article  Google Scholar 

  • Norman, D. A. (1988). The psychology of everyday things. New York: Basic Books.

    Google Scholar 

  • Norman, D. A. (1999). Affordance, conventions, and design. Interactions, 6(3), 38–43. doi:10.1145/301153.301168.

    Article  Google Scholar 

  • Paek, S. (2012). The impact of multimodal virtual manipulatives on young children’s mathematics learning (Doctoral dissertation). Retrieved from ProQuest Dissertations & Theses Full Text. (UMI No. 3554708)

  • Quintana, C., Reiser, B. J., Davis, E. A., Krajcik, J., Fretz, E., Duncan, R. G., et al. (2004). A scaffolding design framework for software to support science inquiry. The Journal of the Learning Sciences, 13(3), 337–386.

    Article  Google Scholar 

  • Saldaña, J. (2013). The coding manual for qualitative researchers (2nd ed.). Thousand Oaks, CA: Sage.

    Google Scholar 

  • Sarama, J., & Clements, D. H. (2009). Early childhood mathematics education research: Learning trajectories for young children. New York: Routledge.

    Google Scholar 

  • Tucker, S. I. (2015). An exploratory study of attributes, affordances, abilities, and distance in children’s use of mathematics virtual manipulative iPad apps (Doctoral dissertation). http://gradworks.umi.com/37/23/3723089.html

  • Tucker, S. I. (in press). The modification of attributes, affordances, abilities, and distance for learning framework and its applications to interactions with mathematics virtual manipulatives. In International perspectives on teaching and learning mathematics with virtual manipulatives. Berlin: Springer.

  • Tucker, S. I., & Moyer-Packenham, P. S. (2014). Virtual manipulatives’ affordances influence student learning. In S. Oesterle, C. Nicol, P. Liljedahl, & D. Allan (Eds.), Proceedings of the Joint Meeting of PME 38 and PME-NA 36 (Vol. 6, p. 251). PME: Vancouver.

    Google Scholar 

  • Tucker, S. I., Moyer-Packenham, P. S., Shumway, J. F., & Jordan, K. (in press). Zooming in on students’ thinking: How a number line app revealed, concealed, and developed students’ number understanding. Australian Primary Mathematics Classroom.

  • Wood, D., Bruner, J. S., & Ross, G. (1976). The role of tutoring in problem solving. Journal of Child Psychology and Psychiatry, 17(2), 89–100. doi:10.1111/j.1469-7610.1976.tb00381.x.

    Article  Google Scholar 

  • Zanchi, C., Presser, A. L., & Vahey, P. (2013). Next generation preschool math demo: Tablet games for preschool classrooms. In Proceedings of the 12th international conference on interaction design and children (pp. 527–530). New York, NY: ACM. doi:10.1145/2485760.2485857

Download references

Acknowledgments

Financial support for the work reported in this paper was provided for a project titled: Captivated! Young Children’s Learning Interactions with iPad Mathematics Apps, funded by the Vice President for Research Office category of Research Catalyst Funding at Utah State University, 2605 Old Main Hill, Logan, UT 84322, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen I. Tucker.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Appendix

Appendix

See Table 3.

Table 3 Mathematics apps selected for the pre and post assessments and learning activities

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tucker, S.I., Moyer-Packenham, P.S., Westenskow, A. et al. The Complexity of the Affordance–Ability Relationship When Second-Grade Children Interact with Mathematics Virtual Manipulative Apps. Tech Know Learn 21, 341–360 (2016). https://doi.org/10.1007/s10758-016-9276-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10758-016-9276-x

Keywords

Navigation