Skip to main content
Log in

Shifting effects of rock roughness across a benthic food web

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Habitat heterogeneity affects the spatial pattern of stream organisms, but it is unclear how broadly heterogeneity affects the distribution of organisms within a food web. Specifically, rougher rocks have greater algal biomass than smoother rocks, and we hypothesized bottom-up food web control of food web structure, in which rougher rocks would also have higher grazer and predator abundance. We surveyed algal biomass and macroinvertebrates on rocks of differing roughness. We also conducted a field experiment to separately examine rock roughness and algal biomass effects by manipulating algal biomass by raking or scrubbing rocks within created rock clusters. Neither the survey nor the experiment strongly supported a bottom-up scenario. Algal biomass increased with rock roughness. Grazing mayfly abundance was distributed evenly among geologic rock types, except for a higher abundance of baetids on rocks with large cavities, where predatory stoneflies were also abundant. In the rock cluster experiment, the moderate raking disturbance produced higher grazer abundance and reduced algal biomass relative to unmanipulated controls. We concluded that fine-scale roughness directly promoted algal biomass, whereas larger-grain roughness (crevices) affected the distribution of the food web components by forming clumped distributions of grazing baetid mayflies and predatory stoneflies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Álvarez, M. & I. Pardo, 2007. Factors controlling epilithon biomass in a temporary, karstic stream: the interaction between substratum and grazing. Journal of the North American Benthological Society 26: 207–220.

    Article  Google Scholar 

  • Antoine, S. E. & K. Benson-Evans, 1985. Colonisation rates of benthic algae on four different rock substrata in the River Ithon, Mid Wales, UK. Limnologica 16: 307–313.

    Google Scholar 

  • Bergey, E. A., 1999. Crevices as refugia for stream diatoms: effect of crevice size on abraded substrates. Limnology and Oceanography 44: 1522–1529.

    Article  Google Scholar 

  • Bergey, E. A., 2005. How protective are refuges? Quantifying algal protection in rock crevices. Freshwater Biology 50: 1163–1177.

    Article  Google Scholar 

  • Bergey, E. A., 2006. Measuring the surface roughness of stream stones. Hydrobiologia 563: 247–252.

    Article  Google Scholar 

  • Bergey, E. A., 2008. Does rock chemistry affect periphyton accrual in streams? Hydrobiologia 614: 141–150.

    Article  CAS  Google Scholar 

  • Bergey, E. A. & G. M. Getty, 2006. A review of methods for measuring the surface area of stream substrates. Hydrobiologia 556: 7–16.

    Article  Google Scholar 

  • Bergey, E. A. & J. E. Weaver, 2004. The influence of crevice size on the protection of epilithic algae from grazers. Freshwater Biology 49: 1014–1025.

    Article  Google Scholar 

  • Bergey, E. A., J. T. Cooper & B. C. Phillips, 2010. Substrate characteristics affect colonization by the bloom-forming diatom Didymosphenia geminata. Aquatic Ecology 44: 33–40.

    Article  CAS  Google Scholar 

  • Bjornn, T. C. & D. W. Reiser, 1991. Habitat requirements of salmonids in streams. In Meehan, W. R. (ed.) Influences of forest and rangeland management on salmonid fishes and their habitats. American Fisheries Society Special Publication 19. American Fisheries Society, Bethesda, MD: 83–138.

  • Brown, B. L. & R. L. Lawson, 2010. Habitat heterogeneity and activity of an omnivorous ecosystem engineer control stream community dynamics. Ecology 91: 1799–1810.

    Article  PubMed  Google Scholar 

  • Bunte, K. & S. R. Abt, 2001. Sampling surface and subsurface particle-size distributions in wadable gravel-and cobble-bed streams for analyses in sediment transport, hydraulics, and streambed monitoring. Gen. Tech. Rep. RMRS-GTR-74. Fort Collins,CO.

  • Cattaneo, A., T. Kerimian, M. Roberge & J. Marty, 1997. Periphyton distribution and abundance on substrata of different size along a gradient of stream trophy. Hydrobiologia 354: 101–110.

    Article  CAS  Google Scholar 

  • Clifford, H. F., R. J. Casey & K. A. Saffran, 1992. Short-term colonization of rough and smooth tiles by benthic macroinvertebrates and algae (chlorophyll a) in two streams. Journal of the North American Benthological Society 11: 304–315.

    Article  Google Scholar 

  • Cooper, S. D., B. Leon, O. Sarnelle, K. Kratz & S. Diehl, 1997. Quantifying spatial heterogeneity in streams. Journal of the North American Benthological Society 16: 174–188.

    Article  Google Scholar 

  • Doi, H. & I. Katano, 2008. Distribution patterns of stream grazers and relationships between grazers and periphyton at multiple spatial scales. Journal of the North American Benthological Society 27: 295–303.

    Article  Google Scholar 

  • Douglas, M. & P. S. Lake, 1994. Species richness of stream stones: an investigation of the mechanisms generating the species-area relationship. Oikos 69: 387–396.

    Article  Google Scholar 

  • Downes, B. J., P. S. Lake, E. S. G. Schreiber & A. Glaister, 1998. Habitat structure and regulation of local species diversity in a stony, upland stream. Ecological Monographs 68: 237–257.

    Article  Google Scholar 

  • Downes, B. J., P. S. Lake, E. S. G. Schreiber & A. Glaister, 2000. Habitat structure, resources and diversity: the separate effects of surface roughness and macroalgae on stream invertebrates. Oecologia 123: 569–581.

    Article  Google Scholar 

  • Dudley, T. L. & C. M. D’Antonio, 1991. The effects of substrate texture, grazing, and disturbance on macroalgal establishment in streams. Ecology 72: 297–309.

    Article  Google Scholar 

  • Erman, D. C. & N. A. Erman, 1984. The response of stream macroinvertebrates to substrate size and heterogeneity. Hydrobiologia 108: 75–82.

    Article  Google Scholar 

  • Francoeur, S. N., B. J. F. Biggs & R. L. Lowe, 1998. Microform bed clusters as refugia for periphyton in a flood-prone headwater stream. New Zealand Journal of Marine and Freshwater Research 32: 363–374.

    Article  Google Scholar 

  • Franken, R. J., J. J. Gardeniers, J. A. Beijer & E. T. H. M. Peeters, 2008. Variation in stonefly (Nemoura cinerea Retzius) growth and development in response to hydraulic and substrate conditions. Journal of the North American Benthological Society 27: 176–185.

    Article  Google Scholar 

  • Grosselin, L. A. & F. Chia, 1995. Distribution and dispersal of early juvenile snails: effectiveness of intertidal microhabitats as refuges and food sources. Marine Ecology Progress Series 128: 213–223.

    Article  Google Scholar 

  • Gurtz, M. E. & J. B. Wallace, 1984. Substrate-mediated response of stream invertebrates to disturbance. Ecology 65: 1556–1561.

    Article  Google Scholar 

  • Gutiérrez, J. L. & O. O. Iribarne, 2004. Conditional responses of organisms to habitat structure: an example from intertidal mudflats. Oecologia 139: 572–582.

    Article  PubMed  Google Scholar 

  • Hart, D. D., 1979. Diversity in stream insects: regulation by rock size and microspatial complexity. Proceedings International Association of Theoretical and Applied Limnology 20: 1376–1381.

    Google Scholar 

  • Hart, D. D. & C. T. Robinson, 1990. Resource limitation in a stream community: phosphorus enrichment effects on periphyton and grazers. Ecology 71: 1494–1502.

    Article  Google Scholar 

  • Hill, W. R., S. C. Weber & A. J. Stewart, 1992. Food limitation of two lotic grazers: quantity, quality, and size-specificity. Journal of the North American Benthological Society 11: 420–432.

    Article  Google Scholar 

  • Hill, W. R., J. G. Smith & A. J. Stewart, 2010. Light, nutrients, and herbivore growth in oligotrophic streams. Ecology 91: 518–527.

    Article  PubMed  Google Scholar 

  • Hines, A. H. & J. S. Pearse, 1982. Abalones, shells, and sea otters: dynamics of prey populations in central California. Ecology 63: 1547–1560.

    Article  Google Scholar 

  • Hovel, K. A. & R. A. Wahle, 2010. Effects of habitat patchiness on American lobster movement across a gradient of predation risk and shelter competition. Ecology 91: 1993–2002.

    Article  PubMed  Google Scholar 

  • Johnson, M. P., R. N. Hughes, M. T. Burrows & S. J. Hawkins, 1998. Beyond the predation halo: small scale gradients in barnacle populations affected by the relative refuge value of crevices. Journal of Experimental Marine Biology and Ecology 231: 163–170.

    Article  Google Scholar 

  • Kagata, H. & T. Ohgushi, 2006. Bottom-up trophic cascades and material transfer in terrestrial food webs. Ecol Res 21: 26–34.

    Article  Google Scholar 

  • Kock, C., A. Meyer, B. Spänhoff & E. I. Meyer, 2006. Tufa deposition in karst streams can enhance the food supply of the grazing caddisfly Melampophylax mucoreus (Limnephilidae). International Review of Hydrobiology 91: 242–249.

    Article  Google Scholar 

  • Kohler, S. L., 1984. Search mechanism of a stream grazer in patchy environments: the role of food abundance. Oecologia 62: 209–218.

    Article  Google Scholar 

  • Komárek, O., 2003. Spatial autocorrelation and fractal dimension of alga species assemblage in a gravel stream of Central Europe. International Review of Hydrobiology 88: 385–396.

    Article  Google Scholar 

  • Krejci, M. E. & R. L. Lowe, 1986. Importance of sand grain mineralogy and topography in determining micro-spatial distribution of epipsammic diatoms. Journal of the North American Benthological Society 5: 211–220.

    Article  Google Scholar 

  • Lamberti, G. A. & V. H. Resh, 1983. Stream periphyton and insect herbivores: an experimental study of grazing by a caddisfly population. Ecology 64: 1124–1135.

    Article  Google Scholar 

  • Langenheim, J. H., 1962. Vegetation and environmental patterns in the Crested Butte area, Gunnison County, Colorado. Ecological Monographs 32: 249–285.

    Article  Google Scholar 

  • Lubchenco, J., 1983. Littornia and Fucus: effects of herbivores, substratum heterogeneity, and plant escapes during succession. Ecology 64: 1116–1123.

    Article  Google Scholar 

  • Mac Nally, R. & P. S. Lake, 1999. On the generation of diversity in archipelagos: a re-evaluation of the Quinn-Harrison ‘saturation index’. Journal of Biogeography 26: 285–295.

    Article  Google Scholar 

  • McCoy, E. D. & S. S. Bell, 1991. Habitat structure: the evolution and diversification of a complex topic. In Bell, S. S. & E. D. McCoy (eds.), Habitat Structure: the Physical Arrangement of Objects in Space. Chapman and Hall, London, UK: 3–27.

    Chapter  Google Scholar 

  • Murdock, J. N. & W. K. Dodds, 2007. Linking benthic algal biomass to stream sunstratum topography. Journal of Phycology 43: 449–460.

    Article  Google Scholar 

  • Palmer, T. M., 1995. The influence of spatial heterogeneity on the behavior and growth of two herbivorous stream insects. Oecologia 104: 476–486.

    Article  Google Scholar 

  • Peckarsky, B. L., 1980. Predator-prey interactions between stoneflies and mayflies: behavioral observations. Ecology 61: 932–943.

    Article  Google Scholar 

  • Peckarsky, B. L., 1996. Alternative predator avoidance syndromes of stream-dwelling mayfly larvae. Ecology 77: 1888–1905.

    Article  Google Scholar 

  • Peckarsky, B. L. & C. A. Cowan, 1995. Microhabitat and activity periodicity of predatory stoneflies and their mayfly prey in a western Colorado stream. Oikos 74: 513–521.

    Article  Google Scholar 

  • Peckarsky, B. L. & S. I. Dodson, 1980. Do stonefly predators influence benthic distributions in streams? Ecology 61: 1275–1282.

    Article  Google Scholar 

  • Peckarsky, B. L., S. I. Dodson & D. J. Conklin, 1985. A Key to the Aquatic Insects of Streams in the Vicinity of the Rocky Mountain Biological Lab, Including Chironomid Larvae from Streams and Ponds. Colorado Division of Wildlife, Denver CO.

    Google Scholar 

  • Power, M. E., 1990. Resource enhancement by indirect effects of grazers: armored catfish, algae, and sediment. Ecology 71: 897–904.

    Article  Google Scholar 

  • Pringle, C. M., R. J. Naiman, G. Bretschko, J. R. Karr, M. W. Oswood, R. W. Jackson, R. L. Welcomme & M. J. Winterbourn, 1988. Patch dynamics in lotic systems: the stream as a mosaic. Journal of the North American Benthological Society 7: 503–524.

    Article  Google Scholar 

  • Rader, R. B. & J. V. McArthur, 1995. The relative importance of refugia in determining the drift and habitat selection of predaceous stoneflies in a sandy-bottomed stream. Oecologia 103: 1–9.

    Article  Google Scholar 

  • Richards, C. & G. W. Minshall, 1988. The influence of periphyton abundance on Baetis bicaudatus distribution and colonization in a small stream. Journal of the North American Benthological Society 7: 77–86.

    Article  Google Scholar 

  • Ricklefs, R. E., 1977. Environmental heterogeneity and plant species diversity: a hypothesis. The American Naturalist 111: 376–381.

    Article  Google Scholar 

  • Roy, S. & J. S. Singh, 1994. Consequences of habitat heterogeneity for availability of nutrients in a dry tropical forest. Journal of Ecology 82: 503–509.

    Article  CAS  Google Scholar 

  • Sartory, D. P. & J. U. Grobbelaar, 1984. Extraction of chlorophyll a from freshwater phytoplankton for spectrophotometric analysis. Hydrobiologia 114: 177–187.

    Article  CAS  Google Scholar 

  • Schneck, F., A. Schwarzbold & A. S. Melo, 2011. Substrate roughness affects stream benthic algal diversity, assemblage composition, and nestedness. Journal of the North American Benthological Society 30: 1049–1056.

    Article  Google Scholar 

  • Scrimgeour, G. J. & J. M. Culp, 1994. Feeding while evading predators by a lotic mayfly: linking short-term foraging behaviours to long-term fitness consequences. Oecologia 100: 128–134.

    Article  Google Scholar 

  • Scrimgeour, G. J., J. M. Culp & N. E. Glozier, 1993. An improved technique for sampling lotic invertebrates. Hydrobiologia 254: 65–71.

    Article  Google Scholar 

  • Skov, M. W., M. Volkelt-Igoe, S. J. Hawkins, B. Jesus, R. C. Thompson & C. P. Doncaster, 2010. Past and present grazing boosts the photo-autotrophic biomass of biofilms. Marine Ecology Progress Series 401: 101–111.

    Article  CAS  Google Scholar 

  • Wellnitz, T. & N. Leroy Poff, 2006. Herbivory, current velocity and algal regrowth: how does periphyton grow when the grazers have gone? Freshwater Biology 51: 2114–2123.

    Article  Google Scholar 

  • Wimp, G. M., S. M. Murphy, D. L. Finke, A. F. Huberty & R. F. Denno, 2010. Increased primary production shifts the structure and composition of a terrestrial arthropod community. Ecology 91: 3303–3311.

    Article  PubMed  Google Scholar 

  • Winnie, J. A., P. Cross & W. Getz, 2008. Habitat quality and heterogeneity influence distribution and behavior in African buffalo (Syncerus caffer). Ecology 89: 1457–1468.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We appreciate the use of facilities at the Rocky Mountain Biological Laboratory in Gothic, CO. Barbara Peckarsky advised on sampling sites and Emilee Tarver, Barrett Philips, Sarah Hobson, and Russell Hobson helped with field and laboratory work. Funding was provided by NSF CAREER grant DEB-0447449 and Oklahoma EPSCoR to EAB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth A. Bergey.

Additional information

Handling editor: David J. Hoeinghaus

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bergey, E.A., Cooper, J.T. Shifting effects of rock roughness across a benthic food web. Hydrobiologia 760, 69–79 (2015). https://doi.org/10.1007/s10750-015-2303-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-015-2303-4

Keywords

Navigation