Skip to main content
Log in

Measuring the Surface Roughness of Stream Stones

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Measuring the fine-scale heterogeneity of stones and other substrates is a challenge for benthic ecologists. I describe a method for measuring the roughness of stones that is based on the ratio of two surface area measurements: one that follows substrate contours and one based on a similar-sized modified spheroid. This roughness index is easily measured, assesses the entire surface of stones, and enables the measurement of replicate stones. Roughness measurements of 14 rock types demonstrated that values obtained were consistent with perceived roughness and porosity. Application of the roughness index to a published data set produced a curvilinear relationship between stone roughness and the biomass of algae in roughness-associated crevices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anselme K., Bigerelle M., Noel B., Dufresne E., Judas D. and Hardouin P. (2000). Qualitative and quantitative study of human osteoblast adhesion on materials with various surface roughness. Journal of Biomedical Materials Research 49: 155–166

    Article  CAS  PubMed  Google Scholar 

  • Archambault P. and Bourget E. (1996). Scales of coastal heterogeneity and benthic intertidal species richness, diversity and abundance. Marine Ecology Progress Series 136: 111–121

    Google Scholar 

  • Arnold J. W. and Bailey G. W. (2000). Surface finishes on stainless steel reduce bacterial attachment and early biofilm formation: Scanning electron and atomic force microscopy study. Poultry Science 79: 1839–1845

    CAS  PubMed  Google Scholar 

  • Barrett P. J. (1980). The shape of rock particles, a critical review. Sedimentology 27: 291–303

    Google Scholar 

  • Bell R. A. (1993). Cryptoendolithic algae of hot semiarid lands and deserts. Journal of Phycology 29: 133–139

    Article  Google Scholar 

  • Bergey E. A. (1999). Crevices as refugia for stream diatoms: effect of crevice size on abraded substrates. Limnology and Oceanography 44: 1522–1529

    Article  Google Scholar 

  • Bergey E. A. (2005). How protective are refuges? Quantifying algal protection in rock crevices. Freshwater Biology 50: 1163–1177

    Article  Google Scholar 

  • Bergey, E. A. & G. M. Getty, 2006. A review of methods for measuring the surface area of stream substrates. Hydrobiologia 556: 7–16

    Google Scholar 

  • Bergey E. A. and Weaver J. E. (2004). The influence of crevice size on the protection of epilithic algae from grazers. Freshwater Biology 49: 1014–1025

    Article  Google Scholar 

  • Bourget E. (1988). Barnacle larval settlement: the perception of cues at different spatial scales. In: Chelazzi, G. and Vannini, M. (eds) Behavioral Adaptation to Intertidal Life, pp. Plenum Press, New York

    Google Scholar 

  • Cardinale B. J., Palmer M. A., Swan C. M., Brooks S. and Poff N. L. (2002). The influence of substrate heterogeneity on biofilm metabolism in a stream ecosystem. Ecology 83: 412–422

    Article  Google Scholar 

  • Clifford H. F., Gotceitas V. and Casey R. J. (1989). Roughness and color of artificial substratum particles as possible factors in colonization of stream invertebrates. Hydrobiologia 175: 89–95

    Article  Google Scholar 

  • Commito J. A. and Rusignuolo B. R. (2000). Structural complexity in mussel beds: the fractal geometry of surface topography. Journal of Experimental Marine Biology and Ecology 255: 133–152

    Article  PubMed  Google Scholar 

  • Downes B. J., Lake P. S., Schreiber E. S. G. and Glaister A. (2000). Habitat structure, resources and diversity: the separate effects of surface roughness and macroalgae on stream invertebrates. Oecologia 123: 569–581

    Article  Google Scholar 

  • Dudley T. L. and D’Antonio C. M. (1991). The effects of surface texture, grazing and disturbance on macroalgal establishment in streams. Ecology 72: 297–309

    Article  Google Scholar 

  • Gerrath J. F., Gerrath J. A., Matthes U. and Larson D. W. (2000). Endolithic algae and cyanobacteria from cliffs of the Niagara Escarpment, Ontario, Canada. Canadian Journal of Botany 78: 807–815

    Article  Google Scholar 

  • Golubić S. (1969). Distribution, taxonomy and boring patterns of marine endolithic algae. American Zoologist 9: 747–751

    Google Scholar 

  • Graham A. A., McCaughan D. J. and McKee F. S. (1988). Measurement of surface area of stones. Hydrobiologia 157: 85–87

    Article  Google Scholar 

  • Harrod J. J. and Hall R. E. (1962). A method for determining the surface areas of various aquatic plants. Hydrobiologia 20: 173–178

    Article  Google Scholar 

  • Hills J. M., Thomason J. C. and Muhl J. (1999). Settlement of barnacle larvae is governed by Euclidean and not fractal surface characteristics. Functional Ecology 13: 868–875

    Article  Google Scholar 

  • Holomuzki J. R. and Biggs B. J. F. (2003). Sediment texture mediates high-flow effects on lotic macroinvertebrates. Journal of the North American Benthological Society 22: 542–553

    Google Scholar 

  • Hynes H. B. N. (1972). The Ecology of Running Waters. University of Toronto Press, Toronto

    Google Scholar 

  • Pimienta C. and Tawashi R. (1999). Quantifying the surface geometry of titanium implant material by different methods of analysis. Cells and Materials 9: 105–115

    Google Scholar 

  • Robson B. J., Chester E. T. and Barmuta L. A. (2002). Using fractal geometry to make rapid field measurements of riverbed topography at ecologically useful spatial scales. Marine and Freshwater Research 53: 999–1003

    Article  Google Scholar 

  • Sanson G.D., Stolk R. and Downes B. J. (1995). A new method for characterizing surface roughness and available space in biological systems. Functional Ecology 9: 127–135

    Google Scholar 

  • Schmid P. E. (2000). Fractal properties of habitat and patch structure in benthic ecosystems. Advances in Ecological Research 30: 339–401

    Article  Google Scholar 

  • Schmid P. E., Tokeshi M. and Schmid-Araya J.M. (2002). Scaling in stream communities. Proceedings of the Royal Society of London, Series B 269: 2587–2594

    Article  Google Scholar 

  • Taniguchi H. and Tokeshi M. (2004). Effects of habitat complexity on benthic assemblages in a variable environment. Freshwater Biology 49: 1164–1178

    Article  Google Scholar 

  • Underwood A. J. and Chapman M. G. (1989). Experimental analyses of the influence of topography of the substratum on movements and density of an intertidal snail, Littorina unifasciata. Journal of Marine Biology and Ecology 134: 175–196

    Article  Google Scholar 

  • Wright K. K. and Li J. L. (2002). From continua to patches: examining stream community structure over large environmental gradients. Canadian Journal of Fisheries and Aquatic Sciences 59: 1404–1417

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth A. Bergey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bergey, E.A. Measuring the Surface Roughness of Stream Stones. Hydrobiologia 563, 247–252 (2006). https://doi.org/10.1007/s10750-006-0016-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-006-0016-4

Keywords

Navigation