Skip to main content
Log in

Distribution of cladoceran assemblages across environmental gradients in Nova Scotia (Canada) lakes

  • Primary research paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Cladocera sub-fossils have widely been recognized as useful environmental indicators. Nevertheless, investigations into the distribution and environmental controls on Cladocera are scarce in North America, hindering their use in paleolimnological studies. Here, we examine cladoceran assemblage and size structure from the surface sediments of 49 soft-water Nova Scotia (Canada) lakes to provide ecological data on this key taxonomic group, the first study of its kind for the northern Atlantic coast of North America. We found that Nova Scotia lakes contain a diverse chydorid assemblage, but were generally dominated by the smaller pelagic herbivore Eubosmina longispina. Daphnia, a larger pelagic herbivore, was relatively uncommon in these lakes. Redundancy analyses (RDA) identified maximum lake depth and dissolved organic carbon (DOC) as the environmental variables that best explained the structuring of these cladoceran assemblages. Generalized linear models were then used to better characterize the ecological associations for individual taxa. Body size of the bosminids in these lakes was significantly correlated only to total nitrogen (TN), with larger bosminids in lakes with lower TN values. Bosminid mucro length, an indication of invertebrate and fish predation pressure, was significantly related to TN, maximum lake depth, and lake surface area. The ecological information provided by this study should assist the interpretation of paleolimnological assessments of environmental change in these and other similar lakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alexander, M. L. & S. C. Hotchkiss, 2010. Bosmina remains in lake sediments as indicators of zooplankton community composition. Journal of Paleolimnology 43: 51–59.

    Article  Google Scholar 

  • Amsinck, S. L., A. Strzelczak, R. Bjering, F. Landkildehus, T. L. Lauridsen, K. Christoffersen & E. Jeppesen, 2006. Lake depth rather than fish planktivory determines cladoceran community structure in Faroese lakes – evidence from contemporary data and sediments. Freshwater Biology 51: 2124–2142.

    Article  CAS  Google Scholar 

  • Birks, H. J. B., 1998. Numerical tools in palaeolimnology – progress, potentialities, and problems. Journal of Paleolimnology 20: 307–332.

    Article  Google Scholar 

  • Black, R. W. & N. G. Hairston Jr., 1983. Cyclomorphosis in Eubosmina longispina in a small North American pond. Hydrobiologia 102: 61–67.

    Article  Google Scholar 

  • Blouin, A. C., 1989. Patterns of plankton species, pH, and associated water chemistry in Nova Scotia lakes. Water, Air, and Soil Pollution 46: 343–358.

    CAS  Google Scholar 

  • Bos, D. G., 2001. Sedimentary cladoceran remains, a key to interpreting past changes in nutrients and trophic interactions. PhD thesis, Queen’s University, Kingston, Ontario, Canada.

  • Bos, D. G. & B. F. Cumming, 2003. Sedimentary cladoceran remains and their relationships to nutrients and other limnological variables in 53 lakes from British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 60: 1177–1189.

    Article  Google Scholar 

  • Brahney, J., R. Routledge, D. G. Bos & M. G. Pellatt, 2010. Changes to the productivity and trophic structure of a sockeye salmon rearing lake in British Columbia. North American Journal of Fisheries Management 30: 433–444.

    Google Scholar 

  • Brett, M. T., 1989. Zooplankton communities and acidification processes (a review). Water, Air, and Soil Pollution 44: 387–414.

    Article  CAS  Google Scholar 

  • Cairns, A., 2010. Field assessments and evidence of impact of calcium decline on Daphnia (Crustacea, Anomopoda) in Canadian Shield lakes. MSc thesis, York University, Toronto, Ontario, Canada.

  • Carter, J. C. H., W. D. Taylor, R. Chengalath & D. A. Scruton, 1986. Limnetic zooplankton assemblages in Atlantic Canada with special reference to acidification. Canadian Journal of Fisheries and Aquatic Sciences 43: 444–456.

    Article  CAS  Google Scholar 

  • Chengalath, R., 1982. A faunistic and ecological survey of littoral Cladocera of Canada. Canadian Journal of Zoology 60: 2668–2682.

    Article  Google Scholar 

  • Chengalath, R., 1987. The distribution of chydorid Cladocera in Canada. Hydrobiologia 145: 151–157.

    Article  Google Scholar 

  • Clair, T. A., J. M. Ehrman, A. J. Ouellet, G. Brun, D. Lockerbie & C.-U. Ro, 2002. Changes in freshwater acidification trends in Canada’s Atlantic provinces: 1983–1997. Water, Air, and Soil Pollution 135: 335–354.

    Article  CAS  Google Scholar 

  • Clarke, K. R., 1993. Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology 18: 117–143.

    Article  Google Scholar 

  • Davidson, T. A., C. D. Sayer, M. R. Perrow, M. Bramm & E. Jeppesen, 2007. Are the controls of species composition similar for contemporary and sub-fossil cladoceran assemblages? A study of 39 shallow lakes of contrasting trophic status. Journal of Paleolimnology 38: 117–134.

    Article  Google Scholar 

  • Davis, D. S., S. Browne & S., 1996. The Natural History of Nova Scotia. Vol. 2: Theme Regions. Nimbus Publishing, Halifax: 304 p.

    Google Scholar 

  • De Bernardi, R., G. Guissani & M. Manca, 1987. Cladocera: predators and prey. Hydrobiologia 145: 225–243.

    Article  Google Scholar 

  • DeSellas, A. M., A. M. Paterson, J. N. Sweetman & J. P. Smol, 2008. Cladocera assemblages from the surface sediments of south-central Ontario (Canada) lakes and their relationships to measured environmental variables. Hydrobiologia 600: 105–119.

    Article  CAS  Google Scholar 

  • Dumont, H. J. & N. N. Smirnov, 1996. Reinstatement of the genus Paralona Sramek-Husek et al., 1962, and assessment of morphological variability in the Paralona pigra group (Anomopoda, Chydoridae). Hydrobiologia 333: 26–29.

    Article  Google Scholar 

  • Dzialowski, A. R., S.-H. Wang, N.-C. Lim, W. W. Spotts & D. G. Huggins, 2005. Nutrient limitation of phytoplankton growth in central plains reservoirs, USA. Journal of Plankton Research 27: 587–595.

    Article  CAS  Google Scholar 

  • Elser, J. T., M. M. Elser, N. A. MacKay & S. R. Carpenter, 1988. Zooplankton-mediated transitions between N- and P-limited algal growth. Limnology and Oceanography 33: 1–14.

    Article  CAS  Google Scholar 

  • Frey, D. G., 1982. The reticulated species of Chydorus (Cladocera, Chydoridae): two new species with suggestions of convergence. Hydrobiologia 93: 255–279.

    Article  Google Scholar 

  • Fryer, G., 1980. Acidity and species diversity in freshwater crustacean faunas. Hydrobiologia 10: 41–45.

    Google Scholar 

  • Gerber, A. M., B. K. Ginn, C. J. Whitfield, P. J. Dillon, B. F. Cumming & J. P. Smol, 2008. Glasgow Lake: an early-warning sentinel of lake acidification in Cape Breton Highlands National Park (Nova Scotia, Canada). Hydrobiologia 614: 299–307.

    Article  CAS  Google Scholar 

  • Ginn, B. K., B. F. Cumming & J. P. Smol, 2007a. Assessing pH changes since pre-industrial times in 51 low-alkalinity lakes in Nova Scotia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 64: 1043–1054.

    Article  CAS  Google Scholar 

  • Ginn, B. K., B. F. Cumming & J. P. Smol, 2007b. Long-term lake acidification trends in high- and low-sulphate deposition regions from Nova Scotia, Canada. Hydrobiologia 586: 261–275.

    Article  CAS  Google Scholar 

  • Ginn, B. K., L. C. Grace, B. F. Cumming & J. P. Smol, 2008. Tracking anthropogenic- and climatic-related environmental changes in the remaining habitat lakes of the endangered Atlantic whitefish (Coregonus huntsmani) using palaeolimnological techniques. Aquatic Conservation: Marine and Freshwater Ecosystems 18: 1217–1226.

    Article  Google Scholar 

  • Glew, J., 1988. A portable extruding device for close interval sectioning of unconsolidated core samples. Journal of Paleolimnology 1: 235–239.

    Article  Google Scholar 

  • Glew, J., 1989. A new trigger mechanism for sediment samplers. Journal of Paleolimnology 2: 241–243.

    Article  Google Scholar 

  • Glew, J. R. G., J. P. Smol & W. M. Last, 2001. Sediment core collection and extrusion. In Last, W. M. & J. P. Smol (eds), Tracking Environmental Change Using Lake Sediments Vol 1: Basin Analysis, Coring, and Chronological Techniques. Kluwer Academic Publishers, Dordrecht, The Netherlands: 73–105.

    Google Scholar 

  • Gliwicz, Z. M., 1990. Food thresholds and body size in cladocerans. Nature 343: 638–640.

    Article  Google Scholar 

  • Gorham, E., J. K. Underwood, F. B. Martin & J. G. Ogden, 1986. Natural and anthropogenic causes of lake acidification in Nova Scotia. Nature 324: 451–453.

    Article  CAS  Google Scholar 

  • Guthrie, J. W., N. M. Hassana, M. S. A. Salama, I. I. Fasfousa, C. A. Murimboha, J. Murimboha, C. L. Chakrabartia & D. C. Grégoireb, 2005. Complexation of Ni, Cu, Zn, and Cd by DOC in some metal-impacted freshwater lakes: a comparison of approaches using electrochemical determination of free-metal-ion and labile complexes and a computer speciation model, WHAM V and VI. Analytica Chimica Acta 528: 205–218.

    Article  CAS  Google Scholar 

  • Hall, R. I. & J. P. Smol, 1996. Paleolimnological assessment of long-term water quality changes in south-central Ontario lakes affected by cottage development and acidification. Canadian Journal of Fisheries and Aquatic Sciences 53: 1–17.

    Article  CAS  Google Scholar 

  • Hann, B. J. & M. A. Turner, 2000. Littoral microcrustacea in Lake 302S in the experimental lakes area of Canada: acidification and recovery. Freshwater Biology 43: 133–146.

    Article  Google Scholar 

  • Hessen, D. O., B. A. Faafeng & T. Andersen, 1995. Replacement of herbivore zooplankton species along gradients of ecosystem productivity and fish predation pressure. Canadian Journal of Fisheries and Aquatic Sciences 52: 733–742.

    Article  Google Scholar 

  • Howell, G. D. & P. Brooksbank, 1987. An assessment of LRTAP acidification of surface waters in Atlantic Canada. Environment Canada, Ottawa.

    Google Scholar 

  • Jefferies, D. S., T. A. Clair, S. Couture, P. J. Dillon, J. Dupont, W. Keller, D. K. McNicol, M. A. Turner, R. Vet & R. Weeber, 2003. Assessing the recovery of lakes in southeastern Canada from the effects of acidic deposition. Ambio 32: 176–182.

    Google Scholar 

  • Jeffries, D. S., 1997. Canadian acid rain assessment Vol. 3: the effects on Canada’s lakes rivers, and wetlands. Environment Canada, Ottawa, ON: 220 p.

    Google Scholar 

  • Jeppesen, E., J. P. Jensen, S. Amsinck, F. Landkildehus, T. Lauridsen & S. F. Mitchell, 2002. Reconstructing the historical changes in Daphnia mean size and planktivorous fish abundance in lakes from the size of Daphnia ephippia in the sediment. Journal of Paleolimnology 27: 133–143.

    Article  Google Scholar 

  • Korhola, A., 1999. Distribution patterns of Cladocera in subarctic fennoscandian lakes and their potential in environmental reconstruction. Ecogeography 22: 357–373.

    Article  Google Scholar 

  • Korhola, A. & M. Rautio, 2001. Cladocera and other brachiopod crustaceans. In Smol, J. P., H. J. B. Birks & W. M. Last (eds), Tracking Environmental Change Using Lake Sediments 4: Zoological Indicators. Kluwer Academic Publishers, Dordrecht, The Netherlands: 5–41.

    Google Scholar 

  • Korhola, A., M. Tikkanen & J. Weckström, 2005. Quantification of Holocene lake-level changes in Finnish Lapland using a Cladocera-lake depth transfer model. Journal of Paleolimnology 34: 175–190.

    Article  Google Scholar 

  • Korosi, J. B., A. M. Paterson, A. M. DeSellas & J. P. Smol, 2008. Linking mean body size of pelagic Cladocera to environmental variables in Precambrian Shield lakes: a paleolimnological approach. Journal of Limnology 67: 22–34.

    Google Scholar 

  • Korosi, J. B., A. M. Paterson, A. M. DeSellas & J. P. Smol, 2010. A comparison of pre-industrial and present-day changes in Bosmina and Daphnia size structure from soft-water Ontario lakes. Canadian Journal of Fisheries and Aquatic Sciences 67: 754–762.

    Article  Google Scholar 

  • Kurek, J., J. B. Korosi, A. Jeziorski & J. P. Smol, 2010. Establishing reliable minimum count sizes for cladoceran subfossils sampled from lake sediments. Journal of Paleolimnology 44: 603–612.

    Article  Google Scholar 

  • Leps, J. & P. Šmilauer, 2003. Multivariate analysis of ecological data using CANOCO. Cambridge University Press, Cambridge, UK.

    Book  Google Scholar 

  • Manca, M., J. Vijverberg, L. V. Polishchuk & D. A. Voronov, 2008. Daphnia body size and population dynamics under predation by invertebrate and fish predators in Lago Maggiore: an approach based on contribution analysis. Journal of Limnology 67: 15–21.

    Google Scholar 

  • Murdoch, A., T. A. Clair, J. K. Underwood & P. Y. Schwarz, 1987. Environmental status of several Shubenacardie River headwater lakes, Nova Scotia, Canada. GeoJournal 14: 311–317.

    Google Scholar 

  • Nilssen, J. P. & S. Sandoy, 1990. Recent lake acidification and cladoceran dynamics: surface sediment and core analysis from lakes in Norway, Scotland and Sweden. Philosophical Transactions of the Royal Society of London 327: 299–309.

    Article  CAS  Google Scholar 

  • Paterson, M., 1993. The distribution of microcrustacea in the littoral zone of a freshwater lake. Hydrobiologia 263: 173–183.

    Article  Google Scholar 

  • Post, D. M., T. M. Frost & J. F. Kitchell, 1995. Morphological responses by Bosmina longirostris and Eubosmina tubicen to changes in copepod predator populations during a whole-lake acidification experiment. Journal of Plankton Research 17: 1621–1632.

    Article  Google Scholar 

  • Rajaratnam, T., 2009. Assessment of long-term changes in water quality from Halifax region lakes (Nova Scotia, Canada) using paleolimnological techniques. MSc thesis, Queen’s University, Kingston, Ontario, Canada.

  • Redfield, A. C., 1958. The biological control of chemical factors in the environment. American Scientist 46: 205–221.

    CAS  Google Scholar 

  • Smol, J. P., 2008. Pollution of Lakes and Rivers: A Paleoenvironmental Perspective, 2nd ed. Blackwell Publishing, Oxford.

    Google Scholar 

  • Sweetman, J. N. & J. P. Smol, 2006a. Patterns in the distribution of cladocerans (Crustacea: Brachiopoda) in lakes across a north-south transect in Alaska, USA. Hydrobiologia 553: 277–291.

    Article  CAS  Google Scholar 

  • Sweetman, J. N. & J. P. Smol, 2006b. A guide to the identification of cladoceran remains (Crustacea: Branchiopoda) in Alaskan lake sediments. Archiv fr Hydrobiologie (Supplement) 151: 353–394.

    Google Scholar 

  • Sweetman, J. N., K. M. Rühland & J. P. Smol, 2010. Environmental and spatial factors influencing the distribution of cladocerans in lakes across the central Canadian Arctic treeline region. Journal of Limnology 69: 76–87.

    Google Scholar 

  • Szeroczyńska, K. & K. Sarmaja-Korjonen, 2007. Atlas of subfossil Cladocera from central and northern Europe. Friends of the Lower Vistula Society, Świecie, Poland.

    Google Scholar 

  • Taylor, D. J., C. R. Ishikane & R. A. Haney, 2002. The systematics of Holarctic bosminiids and a revision that reconciles molecular and morphological evolution. Limnology and Oceanoraphy 47: 1486–1495.

    Article  Google Scholar 

  • ter Braak, C. J. F. & P. S. Šmilauer, 2002. CANOCO 4.5 Reference Manual and CanoDraw for Windows, User’s Guide: Software for Canonical Community Ordination (version 4.5). Microcomputer Power, Ithaca, NY.

    Google Scholar 

  • Thienpont, J. R., B. K. Ginn, B. F. Cumming & J. P. Smol, 2008. Assessing environmental changes in cottage lakes from Kings County (Nova Scotia, Canada) using paleolimnological techniques. Water Quality Research Journal of Canada 43: 85–98.

    CAS  Google Scholar 

  • Tremel, B., S. R. Frey, N. D. Yan, K. M. Somers & T. W. Pawson, 2000. Habitat specificity of littoral Chydoridae (Crustacea, Brachiopoda, Anomopoda) in Plastic Lake, Ontario, Canada. Hydrobiologia 432: 195–205.

    Article  Google Scholar 

  • Underwood, J. K., J. G. Ogden, J. J. Kerekes & H. H. Vaughan, 1987. Acidification of Nova Scotia lakes. Water, Air, and Soil Pollution 32: 77–88.

    Article  CAS  Google Scholar 

  • Verschuren, D., J. Tibby, K. Sabbe & N. Roberts, 2000. Effects of depth, salinity, and substrate on the invertebrate community of a fluctuating tropical lake. Ecology 81: 164–182.

    Article  Google Scholar 

  • Walseng, B., N. D. Yan, T. Pawson & O. Skarpaas, 2008. Acidity versus habitat structure as regulators of littoral microcrustacean assemblages. Freshwater Biology 53: 290–303.

    CAS  Google Scholar 

  • Watt, W. D., 1987. A summary of the impact of acid rain on Atlantic salmon (Salmo salar) in Canada. Water, Air, and Soil Pollution 35: 27–35.

    Article  CAS  Google Scholar 

  • Watt, W. D., C. D. Scott & W. J. White, 1983. Evidence of acidification in some Nova Scotia rivers and its impact on Atlantic salmon, Salmo salar. Canadian Journal of Fisheries and Aquatic Sciences 40: 462–473.

    CAS  Google Scholar 

  • Whiteside, M. C., 1970. Chydorid Cladocera: modern ecology and core studies. Ecological Monographs 40: 79–118.

    Article  Google Scholar 

  • Whiteside, M. C. & R. V. Harmsworth, 1967. Diversity in Chydorid (Cladocera) communities. Ecology 48: 664–667.

    Article  Google Scholar 

  • Williamson, C. E., D. P. Morris, M. L. Pace & O. G. Olson, 1999. Dissolved organic carbon and nutrients as regulators of lake ecosystems: resurrection of a more integrated paradigm. Limnology and Oceanography 44: 795–803.

    Article  CAS  Google Scholar 

  • Williamson, C. E., O. G. Olson, S. E. Lott, N. D. Walker, D. R. Engstrom & B. R. Hargreaves, 2001. Ultraviolet radiation and zooplankton community structure following deglaciation in Glacier Bay, Alaska. Ecological Society of America 82: 1748–1760.

    Google Scholar 

  • Wissel, B., W. J. Boeing & C. W. Ramcharan, 2003. Effects of water color on predation regimes and zooplankton assemblages in freshwater lakes. Limnology and Oceanography 48: 1965–1976.

    Article  Google Scholar 

  • Witty, L. M., 2004. Practical Guide to Identifying Freshwater Crustacean Zooplankton. Cooperative Freshwater Ecology Unit, Department of Biology, Laurentian University, Sudbury, ON, Canada.

    Google Scholar 

  • Yan, N. D., K. M. Somers, R. E. Girard, A. M. Paterson, C. W. Ramcharan, J. A. Rusak, R. Ingram, G. E. Morgan & J. M. Gunn, 2008. Long-term changes in crustacean zooplankton communities of Dorset, Ontario lakes: the probable interactive effects of changes in pH, TP, dissolved organic carbon, and predators. Canadian Journal of Fisheries and Aquatic Sciences 65: 862–877.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Tom Clair and Ian Dennis of Environment Canada (Atlantic Region) for providing water chemistry data, and acknowledge the staff at Kejimkujik and Cape Breton Highlands National Parks for providing logistical support for field work, as well as B. Ginn, M. Rate, C. Chan, B. Keddy, B. Keatley, J. Hawryshyn, J. Thienpont, and A. Jeziorski for field assistance. We also acknowledge A. Jeziorski, J. Sweetman, J. Kurek, and two anonymous reviewers for providing valuable feedback that improved the quality of this manuscript. This study was funded by a Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery grant to JPS, and an NSERC Alexander Graham Bell Canada Graduate Scholarship D to JBK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer B. Korosi.

Additional information

Handling editor: J. Saros

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korosi, J.B., Smol, J.P. Distribution of cladoceran assemblages across environmental gradients in Nova Scotia (Canada) lakes. Hydrobiologia 663, 83–99 (2011). https://doi.org/10.1007/s10750-010-0556-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-010-0556-5

Keywords

Navigation