Skip to main content
Log in

Cladocera: Predators and prey

  • Ecology, Population Studies & History
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Among the freshwater zooplankton community, Cladocera represent one of the most common elements of pelagic populations. Being almost exclusively filter feeders and algae users and, at the same time, the favourite prey of invertebrate and vertebrate predators, Cladocera represent the most important group in the plankton community of lakes as regards energy transfer along the food chain. Because of their short generation times and their high reproductive efficiency, predation by invertebrates, usually, has only a limited role in controlling their density. However, at high densities, invertebrate predators can provide an effective control of Cladocera populations. The intensive research on selective predation by vertebrates has demonstrated that this activity can be responsible, together with competitive interactions, for the dominance of different groups in the planktonic community: large Cladocera dominate when predation is low, Rotifera and small Crustacea dominate at high predation levels and high nannoplanktonic densities. These evidences on the role of vertebrate predation in structuring aquatic environments has greatly contributed to our better understanding of aquatic ecosystem functioning. In particular, it seems that the removal of large filter-feeding herbivorous Cladocera by zooplanktivorous fish can lead to worsening environmental conditions in eutrophicating lakes. In this respect, Cladocera appear to be the key group among zooplanktonic organisms, and their interactions the key factors in aquatic food chain management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allan, J. D., 1973. Competition and the relative abundance of two cladocerans. Ecology 54: 484–498.

    Article  Google Scholar 

  • Allan, J. D., 1974. Balancing predation and competition in cladocerans. Ecology 55: 622–629.

    Article  Google Scholar 

  • Anderson, R. S., 1970. Predator-prey relationships and predation rates for crustacean zooplankters from some lakes in Western Canada. Can. J. Zool. 48: 1229–1240.

    Article  Google Scholar 

  • Anderson, R. S., 1981. Laboratory studies ofChaoborus predation on zooplankton. Northwest Science 55(2): 113–123.

    Google Scholar 

  • Anderson, R. S. & L. G. Raasveldt, 1974.Gammarus andChaoborus predation. Occ. Pap. can. Wildlife Serv. 18: 1–23.

    Google Scholar 

  • Andersson, G., H. Berggren, G. Cronberg & C. Gelin, 1978. Effects of planktivorous and benthivorous fish on organisms and water chemistry in eutrophic lakes. Hydrobiologia 59: 9–15.

    Article  CAS  Google Scholar 

  • Argentesi, F., R. de Bernardi & G. Di Cola, 1974. Mathematical models for the analysis of population dynamics in species with continuous recruitment. Mem. Ist. ital. Idrobiol. 31: 245–275.

    Google Scholar 

  • Argentesi, F. & R. de Bernardi, 1978. A methodology for the study of the trophic interactions in zooplankton communities. Verh. int. Ver. Limnol. 20: 100–104.

    Google Scholar 

  • Black, R. W., 1980. The genetic component of cyclomorphosis inBosmina. In W. C. Kerfoot (ed.), ‘Evolution of Ecology of Zooplankton Communities’. The University Press of New England, Hanover (N.H.); Lond.: 456–469.

    Google Scholar 

  • Bossone, A. & V. Tonolli, 1954. Il problema della convivenza diArctodiaptomus bacillifer (Koelb), diAcanthodiaptomus denticornis (Wierz) e diHeterocope saliens (Lill.). Mem. Ist. ital. Idrobiol. 9: 81–94.

    Google Scholar 

  • Boulet, P. C., 1958. Contribution à l'étude expérimentale de la perception visuelle du mouvement chez la perche et la seiche. Mem. Mus. natn. Hist. nat., Paris, Ser. A Zool. 17.

  • Brandl, Z. & C. H. Fernando, 1981. The impact of predation by cyclopoid copepods on zooplankton. Verh. int. Ver. Limnol. 21: 1573–1577.

    Google Scholar 

  • Braum, E., 1963. Die ersten Beutefanghandlungen junger Blaufelchen (Coregonus wartmanni Bloch) und Hechte (Esox lucius L.). Z. Tierpsychol. 20: 247–266.

    Google Scholar 

  • Brooks, J. L., 1946. Cyclomorphosis inDaphnia. Ecol. Monogr. 16: 409–447.

    Article  Google Scholar 

  • Brooks, J. L., 1964. The relationship between the vertical distribution and seasonal variation of limnetic species ofDaphnia. Verh. int. Ver. Limnol. 15: 684–694.

    Google Scholar 

  • Brooks, J. L., 1965. Predation and relative helmet size in cyclomorphicDaphnia. Proc. natl. Acad. Sci. U.S.A. 53: 119–126.

    Article  CAS  PubMed  Google Scholar 

  • Brooks, J. L., 1968. The effects of prey size selection by lake planktivores. Syst. Zool. 17: 272–291.

    Article  Google Scholar 

  • Brooks, J. L. & S. I. Dodson, 1965. Predation, body size and composition of plankton. Science 150: 28–35.

    Article  PubMed  Google Scholar 

  • Buchanan, C. & J. F. Haney, 1980. Vertical migrations of zooplankton in the arctic: a test of the environmental controls. In W. C. Kerfoot (ed.) ‘Evolution and Ecology of Zooplankton Communities’. The University Press of New England, Hanover (N.H.); Lond.: 69–79.

    Google Scholar 

  • Burns, C. W., 1968. The relationship between body size and filter-feeding Cladocera and the maximum size of particle ingested. Limnol. Oceanogr. 13: 675–678.

    Google Scholar 

  • Confer, J. L., 1971. Intrazooplankton predation byMesocyclops edax at natural prey densities. Limnol. Oceanogr. 16: 663–666.

    Google Scholar 

  • Cummins, K. W., R. R. Costa, R. E. Rowe, G. A. Moshiri, R. M. Scanlon & R. K. Zajdel, 1969. Ecological energetics of a natural population of the predaceous zooplankterLeptodora kindtii Focke (Cladocera). Oikos 20: 189–223.

    Article  Google Scholar 

  • Cushing, D. H., 1955. Some experiments on the vertical migration of zooplankton. J. anim. Ecol. 24: 137–166.

    Article  Google Scholar 

  • David, P. M., 1961. The influence of vertical migration on speciation in the oceanic plankton. Syst. Zool. 10: 10–16.

    Article  Google Scholar 

  • de Bernardi, R., 1974. The dynamics of a population ofDaphnia hyalina Leydig in Lago Maggiore, Northern Italy. Mem. Ist. ital. Idrobiol. 31: 221–243.

    Google Scholar 

  • de Bernardi, R., 1981. Biotic interactions in freshwater and consequences for community structure. Boll. zool. ital. 48: 351–371.

    Google Scholar 

  • de Bernardi, R. & G. Giussani, 1978. The effect of mass fish mortality on zooplankton structure and dynamics in a small Italian lake (Lago di Annone). Verh. int. Ver. Limnol. 20: 1045–1048.

    Google Scholar 

  • de Bernardi, R., 1981. Biotic interactions in freshwater and consequences for community structure. Boll. zool. ital. 48: 353–371.

    Article  Google Scholar 

  • de Bernardi, R. & S. Canali, 1975. Population dynamics of pelagic cladocerans in Lago Maggiore. Mem. Ist. ital. Idrobiol. 32: 365–392.

    Google Scholar 

  • de Bernardi, R. & G. Giussani, 1975. Population dynamics of three cladocerans of Lago Maggiore related to predation pressure by a planktophageous fish. Verh. int. Ver. Limnol. 19: 2906–2912.

    Google Scholar 

  • de Bernardi, R. & E. Soldavini, 1979. Competition and community structure in cladocerans: a case of segregation as a means of coexistence. In R. de Bernardi (ed.) ‘Proc. Symp. Biological and Mathematical Aspects in Population Dynamics’. Mem. Ist. ital. Idrobiol. 37: 115–123.

    Google Scholar 

  • de Bernardi, R. & M. Manca, 1982. The consequences of life history strategies on competition between two cladocerans. Mem. Ist. ital. Idrobiol. 40: 145–161.

    Google Scholar 

  • Dodson, S. I., 1970. Complementary feeding niches sustained by size-selective predation. Limnol. Oceanogr. 15: 131–137.

    Google Scholar 

  • Dodson, S. I., 1972. Mortality in a population ofDaphnia rosea. Ecology 53: 1011–1013.

    Article  Google Scholar 

  • Dodson, S. I., 1974a. Zooplankton competition and predation: an experimental test of the size-efficiency hypothesis. Ecology 55: 605–613.

    Article  Google Scholar 

  • Dodson, S. I., 1974b. Adaptive change in plankton morphology in response to size-selective predation: a new hypothesis of cyclomorphosis. Limnol. Oceanogr. 19: 721–729.

    Google Scholar 

  • Dumont, H. J., 1972. A competition-based approach to the reverse vertical migration in zooplankton and its implications chiefly based on a study of the interactions of the rotiferAsplanchna priodonta Gosse with several Crustacea Entomostraca. Int. Revue ges. Hydrobiol. 51: 1–38.

    Google Scholar 

  • Duncan, A., 1975. The importance of zooplankton in the ecology of reservoirs. Proc. of Symp. on ‘The effects of storage on water quality’. Reading Univ. March 1975: 247–272.

    Google Scholar 

  • Eggers, D. M., 1977. The nature of prey selection by planktivorous fish. Ecology 58: 46–59.

    Article  Google Scholar 

  • Fedorenko, A. Y., 1975. Feeding characteristics and predation impact ofChaoborus (Diptera, Chaoboridae) larvae in a small lake. Limnol. Oceanogr. 20: 250–258.

    Google Scholar 

  • Folt, C. L., 1985. Predator efficiences and prey risks at high and low prey densities. Verh. int. Ver. Limnol. 22: 3210–3214.

    Google Scholar 

  • Folt, C. L., J. T. Rybock & C. R. Goldman, 1982. The effect of prey composition and abundance on the predation rate and selectivity ofMysis relicta. Hydrobiologia 93: 133–143.

    Article  Google Scholar 

  • Fox, H. M., 1948. The haemoglobin ofDaphnia. Proc. R. Soc. Lond. 135: 195–212.

    Article  CAS  Google Scholar 

  • Fryer, G., 1957. The feeding mechanism of some freshwater cyclopoid copepods. Proc. zool. Lond. 129: 1–25.

    Google Scholar 

  • Gadgil, M. & W. H. Bossert, 1970. Life historical consequences of natural selection. Am. Nat. 104: 1–24.

    Article  Google Scholar 

  • Galbraith, M. G. Jr., 1967. Size-selective predation onDaphnia by rainbow trout and yellow perch. Trans. am. Fish. Soc. 96: 1–10.

    Article  Google Scholar 

  • Geller, W. & H. Müller, 1981. The filtration apparatus of Cladocera: filter mesh-size and their implications on food selectivity. Oecologia 49: 316–321.

    Article  Google Scholar 

  • Gilbert, J. J. & J. K. Waage, 1967.Asplanchna, asplanchna substance, and postero-lateral spine length variation of the rotiferBrachionus caliciflorus in a natural environment. Ecology 48: 1027–1031.

    Article  Google Scholar 

  • Gilbert, J. J. & R. S. Stemberger, 1985. Prey capture in the rotiferAsplanchna girodi. Verh. int. Ver. Limnol. 22: 2997–3001.

    Google Scholar 

  • Gliwicz, Z. M., 1969. The share of algae, bacteria and trypton in the food of the pelagic zooplankton of lakes with various trophic characteristics. Bull. L'Acad. Polonaise Sci. 17: 159–165.

    Google Scholar 

  • Gliwicz, Z. M., A. Ghilarov & J. Pijanowska, 1981. Food and predation as major factors limiting two natural populations ofDaphnia cucullata Sars. Hydrobiologia 80: 205–218.

    Article  Google Scholar 

  • Giussani, G., 1974. Predazione selettiva del coregone bondella (Coregonus sp.) del Lago Maggiore. Mem. Ist. ital. Idrobiol. 31: 181–203. Translated in English by F. B. A. Translation Series TR 122.

    Google Scholar 

  • Goldman, C. R., M. D. Morgan, S. T. Threlkeld & N. Angell, 1979. A population dynamics analysis of the cladoceran disappearance from Lake Tahoe, California-Nevada. Limnol. Oceanogr. 24: 289–297.

    Google Scholar 

  • Gophen, M., 1979. Extinction ofDaphnia lumholtzi (Sars) in Lake Kinneret (Israel). Aquaculture 16: 67–71.

    Article  Google Scholar 

  • Gophen, M., 1985. Effect of fish predation on size class distribution of cladocerans in Lake Kinneret. Verh. int. Ver. Limnol. 22: 3104–3108.

    Google Scholar 

  • Grant, J. W. G. & I. A. E. Bayly, 1981. Predator induction of crests in morphs of theDaphnia carinata King complex. Limnol. Oceanogr. 26: 201–218.

    Google Scholar 

  • Green, J., 1967. The distribution and variation ofDaphnia lumholtzi (Crustacea: Cladocera) in relation to fish predation in Lake Albert, East Africa. J. Zool. 151: 181–197.

    Google Scholar 

  • Green, J., 1971. Association of Cladocera in the zooplankton of the lake sources of the White Nile. J. Zool., Lond. 165: 373–414.

    Article  Google Scholar 

  • Greze, V. N., 1963. The determination of transparency among planktonic organisms and its protective significance. Dokl. Akad. Nauk SSSR (English transl.) 151: 956–958.

    Google Scholar 

  • Hairston, N. G. Jr., 1977. The adaptive significance of carotenoid pigmentation inDiaptomus (Copepoda). Ph.D. Thesis, University of Washington. Seattle.

    Google Scholar 

  • Hall, D., 1964. The dynamics of a natural population ofDaphnia. Verh. int. Ver. Limnol. 15: 660–664.

    Google Scholar 

  • Hall, D. J., S. T. Threlkeld & C. W. Burns, 1976. The size-efficiency hypothesis and the size structure of zooplankton communities. Annu. Rev. Ecol. Syst. 7: 177–208.

    Article  Google Scholar 

  • Hardy, A. C., 1956. The open sea; its natural history. Collins, New York.

    Google Scholar 

  • Harper, J. L., 1969. The role of predation in vegetational diversity. In ‘Diversity and Stability in Ecological Systems’. Brookhaven Symp. Biol. 22: 48–62.

    CAS  PubMed  Google Scholar 

  • Havel, J. E., 1985. Cyclomorphosis ofDaphnia pulex spined morphs. Limnol. Oceanogr. 30: 853–861.

    Google Scholar 

  • Hemmings, C. C., 1966. Factors influencing the visibility of objects underwater. In R. Bainbridge, G. C. Evans & O. Rackham (eds) ‘Light as an ecological factor’. Brit. Ecol. Soc. Symp. 6: 359–374.

    Google Scholar 

  • Hester, F. J., 1968. Visual contrast thresholds of the goldfish (Carassius auratus). Vision Res. 8: 1315–1336.

    Article  CAS  PubMed  Google Scholar 

  • Hrbáček, J., 1960. Density of the fish population as a factor influencing the distribution and speciation of the species in the genusDaphnia. XVth Intern. Congr. Zool. London. 1958. Sect. X n. 27.

  • Hrbáček, J., 1962. Species composition and the amount of the zooplankton in relation to the fish stock. Rozpr. čsl. Akad. Věd 10: 1–116.

    Google Scholar 

  • Hrbáček, J., 1977. Competition and predation in relation to species composition of freshwater zooplankton, mainly Cladocera. In J. Cairns Jr. (ed.) ‘Aquatic microbial communities’. Garland Publishing Inc. New York: 307–341.

    Google Scholar 

  • Hrbáček, J. & M. Hrbáčkova-Esslová, 1960. Fish stock as a protective agent in the occurrence of slow developing dwarf species and strains of the genusDaphnia. Int. Revue ges. Hydrobiol. 45: 355–358.

    Google Scholar 

  • Hrbáček, J., M. Dvořakova, V. Kořínek & L. Procházkóva, 1961. Demonstration of the effect of the fish stock on the species composition of zooplankton and the intensity of metabolism of the whole plankton association. Verh. int. Ver. Limnol. 14: 192–195.

    Google Scholar 

  • Hrbáčková-Esslová, M., 1963. The development of three species ofDaphnia in the surface water of the Slapy Reservoir. Int. Revue ges. Hydrobiol. 48: 325–333.

    Google Scholar 

  • Hutchinson, G. E., 1967. A treatise on limnology. Vol. 2. Introduction to lake biology and the limnoplankton. John Wiley and Sons, New York.

    Google Scholar 

  • Jacobs, J., 1961. Cyclomorphosis inDaphnia galeata mendotae Birge, a case of environmentally controlled allometry. Arch. Hydrobiol. 58: 7–71.

    Google Scholar 

  • Jacobs, J., 1964. Hat der hohe Sommerhelm zyklomorpher Daphnien einen Anpassungswert? Verh. int. Ver. Limnol. 15: 676–683.

    Google Scholar 

  • Jacobs, J., 1965. Significance of morphology and physiology ofDaphnia for its survival in predator-prey experiments. Naturwissenschaften 52: 141–142.

    Article  Google Scholar 

  • Jacobs, J., 1966. Predation and rate of evolution in cyclomorphicDaphnia. Verh. int. Ver. Limnol. 16: 1645–1652.

    Google Scholar 

  • Jacobs, J., 1980. Environmental control of cladoceran cyclomorphosis via target-specific growth factors in the animal. In W. C. Kerfoot (ed.) ‘Evolution and Ecology of Zooplankton Communities’. The University of New England, Hanover (N.H.); Lond: 429–437.

    Google Scholar 

  • James, H. G. & B. C. Smith, 1958. Observations on three species ofChaoborus Licht (Diptera: Culicidae) at Churchill, Manitoba. Mosquito News 18: 242–248.

    Google Scholar 

  • Kajak, Z. & B. Ranke-Rybicka, 1970. Feeding and production efficiency ofChaoborus flavicans Meigen (Diptera: Culicidae) larvae in eutrophic and dystrophic lakes. Pol. Arch. Hydrobiol. 17: 225–232.

    Google Scholar 

  • Kerfoot, W. C., 1970. Bioenergetics of vertical migration. Am. Nat. 104: 529–546.

    Article  Google Scholar 

  • Kerfoot, W. C., 1974. Egg-size cycle of a cladoceran. Ecology 55: 1259–1270.

    Article  Google Scholar 

  • Kerfoot, W. C., 1980. Perspectives on cyclomorphosis: separation of phenotypes and genotypes. In W. C. Kerfoot (ed.) ‘Evolution and Ecology of Zooplankton Communities’. The University Press of New England, Hanover (N.H.): Lond. 470–496.

    Google Scholar 

  • Kerfoot, W. C. & R. A. Pastorok, 1978. Survival versus competition: evolutionary compromises and diversity in the zooplankton. Verh. int. Ver. Limnol. 20: 362–374.

    Google Scholar 

  • Kirk, K. L., 1985. Water flows produced byDaphnia andDiaptomus: implications for prey selection by mechanosensory predators. Limnol. Oceanogr. 30: 679–686.

    Google Scholar 

  • Kring, R. L. & W. J. O'Brien, 1976. Effects of varying oxygen concentration on the filtering rate ofDaphnia pulex. Ecology 57: 808–814.

    Article  CAS  Google Scholar 

  • Lane, P. A., 1975. The dynamics of aquatic systems: a comparative study of the structure of four zooplankton communities. Ecol. Monogr. 45: 307–336.

    Article  Google Scholar 

  • Langeland, A., 1978. Effects of fish (Salvelinus alpinus, arctic char) predation on the zooplankton in ten Norwegian lakes. Verh. int. Ver. Limnol. 20: 2065–2069.

    Google Scholar 

  • Langeland, A., 1981. Decreased zooplankton density in two Norwegian lakes caused by predation of recently introducedMysis relicta. Verh. int. Ver. Limnol. 21: 926–937.

    Google Scholar 

  • Langeland, A., 1982. Interactions between zooplankton and fish in a fertilized lake. Holarct. Ecol. 5: 273–310.

    Google Scholar 

  • Lauterborn, R., 1904. Die cyklische oder temporale Variation vonAnuraea cochlearis. Verh. natur.-med Ver. Heidelb Teil II, 7: 529–621.

    Google Scholar 

  • Lewis, W. J. Jr., 1975. Distribution and feeding habits of a tropicalChaoborus population. Verh. int. Ver. Limnol. 19: 3106–3119.

    Google Scholar 

  • Lewis, W. M. Jr., 1980. Evidence for stable zooplankton community structure gradients maintained by predation. In W. C. Kerfoot (ed.) ‘Evolution and Ecology of Zooplankton Communities’. The University Press of New England, Hanover (N.H.); Lond.: 625–634.

    Google Scholar 

  • Lynch, M., 1977. Zooplankton competition and plankton community structure. Limnol. Oceanogr. 22: 775–777.

    Google Scholar 

  • Manca, M. & R. de Bernardi, (in press). Energy budget and evolutive strategies in two cladocerans:Daphnia obtusa Kurz andSimocephalus vetulus (O. F. Müller). Mem. Ist. ital. Idrobiol. 42: in press.

  • McLaren, I. A., 1963. Effects of temperature and growth of zooplankton and the adaptive value of vertical migration. J. Fish. Res. Bd Can. 20: 685–727.

    Google Scholar 

  • McLaren, I. A., 1974. Demographic strategy of vertical migration by a marine copepod. Am. Nat. 108: 91–102.

    Article  Google Scholar 

  • McMahon, J. W. & F. M. Rigler, 1965. Feeding rate ofDaphnia magna Straus in different food labeled with radioactive phosphorus. Limnol. Oceanogr. 10: 105–113.

    Google Scholar 

  • McNaught, D. C., 1975. A hypothesis to explain the succession from calanoids to cladocerans during eutrophication. Verh. int. Ver. Limnol. 19: 724–731.

    Google Scholar 

  • McQueen, D. J., 1969. Reduction of zooplankton standing stocks by predaceousCyclops bicuspidatus thomasi in Marion Lake, British Columbia. J. Fish. Res. Bd Can. 26: 1605–1618.

    Google Scholar 

  • Mellors, W. K., 1975. Selective predation of ephippialDaphnia and the resistance of ephippial eggs to digestion. Ecology 56: 974–980.

    Article  Google Scholar 

  • Monakov, A. V., 1972. Review of studies on feeding of aquatic invertebrates conducted at the Institute of Biology of Inland Waters, Academy of Science, U.S.S.R. J. Fish. Res. Bd Can. 29: 363–383.

    Google Scholar 

  • Mordukhai-Boltowskaja, E. D., 1958. Preliminary notes on the feeding of the carnivorous cladoceransLeptodora kindtii andBythotrephes. Dokl. Akad. Nauk SSSR Biol. Sci. Sect. 122: 828–830.

    Google Scholar 

  • Mordukhai-Boltowskaja, E. D., 1960. On nutrition of the predatory cladocera (Leptodora, Bythotrephes). Bull. Inst. Biol. Reserv. Acad. Sci. USSR 6: 21–22.

    Google Scholar 

  • Narver, D. W., 1970. Diel vertical movements and feeding of underyearling sockeye salmon and the limnetic zooplankton in Babin Lake, British Columbia. J. Fish. Res. Bd Can. 27: 281–316.

    Google Scholar 

  • Nilsson, N. A. & B. Pejler, 1973. On the relation between fish fauna and zooplankton composition in North Swedish lakes. Rep. Inst. Freshwat. Res. Drottningholm 53: 51–77.

    Google Scholar 

  • O'Brien, W. J., D. Kettle, H. Riessen, D. Schmidt & D. Wright, 1980. DimorphicDaphnia longiremis: predation and competitive interactions between the two morphs. In W. C. Kerfoot (ed.) ‘Evolution and Ecology of Zoolplankton Communities’. The University Press of New England, Hanover (N.H.); Lond.: 497–506.

    Google Scholar 

  • O'Brien, W. J., N. A. Slade & G. L. Vinyard, 1976. Apparent size as the determinant of prey selection by bluegill sunfish (Lepomis macrochirus). Ecology 57: 1304–1310.

    Article  Google Scholar 

  • Orcutt, J. D. Jr. & K. G. Porter, 1983. Diel vertical migration by zooplankton: constant and fluctuating temperature effects on life history parameters ofDaphnia. Limnol. Oceanogr. 28: 720–730.

    Google Scholar 

  • Paine, R. T., 1966. Food web complexity and species diversity. Am. Nat. 100: 65–75.

    Article  Google Scholar 

  • Paine, R. T., 1974. Intertidal community structure, experimental studies and the relationship between a dominant competitor and its principal predator. Oecologia 15: 93–120.

    Article  Google Scholar 

  • Pastorok, R. A., 1978. Predation byChaoborus larvae and its impact on the zooplankton community. Ph.D. Thesis. University of Washington, Seattle: 238 pp.

    Google Scholar 

  • Pastorok, R. A., 1980. Selection of prey byChaoborus larvae: a review and new evidence of behavioural flexibility. In W. C. Kerfoot (ed.) ‘Evolution and Ecology of Zooplankton Communities’. The University Press of New England, Hanover (N.H.); Lond.: 538–554.

    Google Scholar 

  • Pastorok, R. A., 1981. Prey vulnerability and size selection byChaoborus larvae. Ecology 62: 1311–1324.

    Article  Google Scholar 

  • Pourriot, R., 1974. Relations prédateur proie chez les rotifères: influence du prédateur (Asplanchna brightwelli) sur la morphologie de la proie (Brachionus bidentata). Ann. Hydrobiol. 5: 43–55.

    Google Scholar 

  • Ramcharan, C. W., W. G. Sprules & R. W. Nero, 1985. Notes on the tactile feeding behaviour ofMysis relicta Loven (Malacostraca: Mysidacea). Verh. int. Ver. Limnol. 22: 3215–3219.

    Google Scholar 

  • Richards, R. C., C. R. Goldman, T. C. Frantz & R. Wickwire, 1975. Where have allDaphnia gone? The decline of a major cladoceran in Lake Tahoe, California-Nevada. Verh. int. Ver. Limnol. 19: 385–842.

    Google Scholar 

  • Riessen, H. P., W. J. O'Brien & B. Loveless, 1984. An analysis of the components ofChaoborus predation on zooplankton and the calculation of relative prey vulnerabilities. Ecology 65: 514–522.

    Article  Google Scholar 

  • Rubenstein, D. I. & M. A. Koehl, 1977. The mechanism of filterfeeding: some theoretical considerations. Am. Nat. 111: 981–994.

    Article  Google Scholar 

  • Schindler, D. W. & G. W. Comita, 1972. The dependence of primary production upon physical and chemical factors in a small senescing lake including the effects of complete winter oxygen depletion. Arch. Hydrobiol. 69: 413–451.

    Google Scholar 

  • Smyly, W. J. P., 1976. Some effects of enclosure on the zooplankton in a small lake. Freshwat. Biol. 6: 241–251.

    Article  Google Scholar 

  • Shapiro, J., V. Lamarra & M. Lynch, 1975. Biomanipulation. An ecosystem approach to lake restoration. In P. L. Brezonik & J. L. Fox (eds) ‘Water quality management through biological control’. U.S. EPA Report N. ENV-67-75-1. University of Florida. Gainesville, Florida: 85–96.

    Google Scholar 

  • Spitze, K., 1985. Functional response of an ambush predator:Chaoborus americanus predation onDaphnia pulex. Ecology 66: 938–949.

    Article  Google Scholar 

  • Sprules, W. G., 1972. Effects of size-selective predation and food competition on high altitude zooplankton communities. Ecology 53: 375–386.

    Article  Google Scholar 

  • Stenson, J. A. E., 1972. Fish predation effects on the species composition of the zooplankton community in eight small forest lakes. Repr. from Inst. of Freshw. res. Report N. 52: 132–148.

    Google Scholar 

  • Stenson, J. A. E., 1980. Predation pressure from fish on twoChaoborus species as related to their visibility. In W. C. Kerfoot (ed.) ‘Evolution and Ecology of Zooplankton Communities’. The University Press of New England, Hanover (N.H.); Lond.: 618–622.

    Google Scholar 

  • Stich, H. B. & W. Lampert, 1981. Predator evasion as an explanation of diurnal vertical migration by zooplankton. Nature 293: 396–398.

    Article  Google Scholar 

  • Stich, H. B. & W. Lampert, 1984. Growth and reproduction of migrating and non-migratingDaphnia species under stimulated food and temperature conditions of diurnal vertical migration. Oecologia 61: 192–196.

    Article  Google Scholar 

  • Strickler, J. R. & S. Twombly, 1975. Reynolds number, diapause, and predatory copepods. Verh. int. Ver. Limnol. 19: 2943–2950.

    Google Scholar 

  • Tappa, D. W., 1965. The dynamics of the association of six limnetic species ofDaphnia in Aziscoos Lake Maine. Ecol. Monogr. 35: 395–423.

    Article  Google Scholar 

  • Taylor, B. A., 1980. Size-selective predation on zooplankton. In W. C. Kerfoot (ed) ‘Evolution and Ecology of Zooplankton Communities’. The University Press of New England, Hanover (N.H.); Lond.: 377–387.

    Google Scholar 

  • Threlkeld, S. T., J. T. Rybock, M. D. Morgan, C. L. Folt & C. R. Goldman, 1980. The effects of an introduced invertebrate predator and food resource variation on zooplankton dynamics in an ultraoligotrophic lake. In W. C. Kerfoot (ed.) ‘Evolution and Ecology of Zooplankton Communities’. The University Press of New England, Hanover (N.H.); Lond.: 555–568.

    Google Scholar 

  • Ware, D. M., 1973. Risk of epibenthic prey to predation by rainbow trout (Salmo gairdnerii). J. Fish. Res. Bd Can. 30: 787–797.

    Google Scholar 

  • Wawrik, F., 1966. Zur Kenntnis alpiner Hochgebirgs-Kleingewässer. Verh. int. Ver. Limnol. 16: 543–553.

    Google Scholar 

  • Weider, L. J., 1984. Spatial heterogeneity ofDaphnia genotypes: vertical migration and habitat partitioning. Limnol. Oceanogr. 29: 225–235.

    Google Scholar 

  • Werner, E. E. & D. J. Hall, 1974. Optimal foraging and the size-selection of prey by the bluegill sunfish (Lepomis macrochirus). Ecology 55: 1042–1052.

    Article  Google Scholar 

  • Wynne-Edwards, V. C., 1962. Animal dispersion in relation to social behaviour. Hafner Publishing Co. New york.

    Google Scholar 

  • Wright, J. C., 1965. The population dynamics ofDaphnia in Canyon Ferry Reservoir, Montana. Limnol. Oceanogr. 10: 583–590.

    Google Scholar 

  • Wong, C. K., 1981. Cyclomorphosis inBosmina and copepod predation. Can. J. Zool. 59: 2049–2052.

    Article  Google Scholar 

  • Zaret, T. M., 1972a. Predator-prey interaction in a tropical lacustrine ecosystem. Ecology 53: 248–257.

    Article  Google Scholar 

  • Zaret, T. M., 1972b. Predators, invisible prey, and the nature of polymorphism in the Cladocera (Class Crustacea). Limnol. Oceanogr. 17: 171–184.

    Google Scholar 

  • Zaret, T. M., 1978. A predation model of zooplankton community structure. Verh. int. Ver. Limnol. 20: 2496–2500.

    Google Scholar 

  • Zaret, T. M., 1980. Predation and Freshwater Communities. New Haven and London Yale University Press: 187 pp.

  • Zaret, T. M. & W. C. Kerfoot, 1975. Fish predation onBosmina longirostris: body size selection versus visibility selection. Ecology 56: 232–237.

    Article  Google Scholar 

  • Zaret, T. M. & W. C. Kerfoot, 1980. The shape and swimming technique ofBosmina longirostris. Limnol. Oceanogr. 25: 126–133.

    Google Scholar 

  • Zaret, T. M. & R. T. Paine, 1973. Species introduction in a tropical lake. Science 182: 449–455.

    Article  PubMed  Google Scholar 

  • Zaret, T. M. & J. S. Suffern, 1976. Vertical migration in zooplankton as a predator avoidance mechanism. Limnol. Oceanogr. 21: 804–813.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Bernardi, R., Giussani, G. & Manca, M. Cladocera: Predators and prey. Hydrobiologia 145, 225–243 (1987). https://doi.org/10.1007/BF02530284

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02530284

Keywords

Navigation