Skip to main content

Advertisement

Log in

Maize (Zea mays L.) management in Yaxcaba, Yucatan, during the twentyfirst century’s first decade is consistent with an overall loss of landrace diversity in southeast Mexico

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

The status of genetic resource conservation in centers of crop diversity remains disputed. Recent case-study findings of persistent maize diversity in Yaxcaba, Yucatan, a municipality in southeast Mexico, have raised questions on earlier reports of widespread losses across the crop’s center of diversity in Mexico. We break down patterns in maize varietal richness in southeast Mexico to show that temporal trends in Yaxcaba are subsumed under spatial variation in this broader region and consistent with an overall loss of diversity. Persistence of diversity in Yaxcaba can be explained by conditions that allowed subsistence farmers to continue sowing land even as maize prices dropped, but these conditions may be rare in Mexico and likely to change. Yaxcaba emerges as a rare community of exceptional diversity from which valuable policy lessons can be drawn. We find that gaps and omissions in the Mexican Government’s strategy for maize conservation have excluded Yaxcaba and likely resulted in an ineffective intervention elsewhere in the Peninsula. An integrated-systems perspective should help us develop a coherent strategy for resource conservation and climate adaptation based on more efficient and equitable instruments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The Yucatan Peninsula comprises the states of Yucatan, Campeche and Quintana Roo.

  2. We use italics to distinguish formally recognized races from named varieties.

  3. More specifically, sympatric populations of the Chalqueño, Cónico and Elotes Cónicos races in central Mexico show little differentiation (Pita Duque 2010), while differences between populations of the Chalqueño race found in central and western Mexico may warrant recognizing distinct races (Mijangos-Cortés et al. 2007). A notable exception to this pattern is observed in the state of Nuevo Leon, northern Mexico, where differentiation runs along racial lines rather than place of origin (Rodríguez-Pérez et al. 2012).

  4. Varieties and races can be said to be “managed” only figuratively, i.e., by farmer collectives or communities, which nevertheless lack full awareness or single intent, raising questions on the meaning of “management”.

  5. Van Heerwaarden et al. (2010) have shown using simulations that the genetic structure of maize populations depends strongly on the management/dynamics of the seed lot.

  6. While some studies report additional statistics, including various indices, Jarvis et al. (2008) assert that richness and evenness are highly correlated at both the farm and community levels, their correlation accounting for ≈94% of the variance observed. That is, evenness provides almost no additional information to richness.

  7. Results for Yaxcaba face a similar problem. Since strong attrition resulted in a noticeably small matched panel (n = 30), no decisive conclusion on the effects of turnover on maize richness is possible. Namely, with only 94% confidence, changes observed on continuing farms cannot strictly be considered significant (Fenzi et al. 2015).

  8. Orozco-Ramírez and Astier (2016) make similar claims of representativeness, reporting that maize diversity in the Patzcuaro Basin, western Mexico, did not decrease between 2005 and 2015. We do not discuss their estimates of maize diversity in the previous section since they are not commensurate with the rest of the literature (Table 1). They report the number of maize samples collected in select farms, which can either underestimate or overestimate the number actually sown during a given year in those same farms (e.g., the 2002 ENHRUM recorded 861 seed lots sown by sample farmers during that year while collecting only 419 maize samples). Our previous analysis of Mexican case studies (Dyer et al. 2014) did not include these authors’ first round of findings (Astier et al. 2010) for this reason. We do not discuss their claims further here. Their data was generated through the “ethnobotanical method for maize collection in order to gather the maximum diversity collected” [sic], which clearly does not guarantee representativeness at any level, certainly not the farm's. Sample validation based on their own data suggests a significant bias in favor of farms conserving maize: “This could lead to a biased sample towards farmers who are more committed with maize agriculture compared to the average farmer” (Orozco-Ramírez and Astier 2016). Namely, the land that “committed maize farmers” in Patzcuaro took under their care in 2015 had increased by 5% with respect to 2005, i.e., adding 11.2 ha of maize, while other farmers in the study area abandoned 2306 ha of maize, reducing the crop’s total acreage in the basin by 23%.

  9. This is true even of quantitative methods, such as cluster analysis, where the number and composition of clades defined depends on subjective criteria. For instance, Camacho Villa and Chávez Servia (2004) recognize 8 groups in central Yucatan, while Burgos May et al. (2004) observe 7 groups across the entire Peninsula. .

  10. Milpa is the traditional Mexican polyculture based on maize.

  11. Both small sample sizes and low farm-level richness in this area limit our ability to detect changes.

  12. Bellon and Hellin (2011) report three consecutive estimates of farm-level richness in the La Frailesca area, lowland Chiapas—i.e., for 2001, 2004 and 2006—but provide no tests of significance.

  13. Genetic erosion is an intuitively appealing but poorly defined concept, applied indistinctly to loss of alleles, gene combinations, genomes, or populations (Frankel and Bennett 1970; Brush 2004).

  14. Crop choices and the area devoted to each crop are ultimately land-use decisions, and as such, they are influenced by myriad local factors, including existent infrastructure, market structure, land availability and opportunities for alternative land uses, as well as relative changes in demand, incomes, output/input prices, wages and land rents (Angelsen 2007).

  15. The Consejo Nacional de Evaluación de la Política de Desarrollo Social (CONEVAL) has performed a more recent evaluation of the PROMAC. Although the focus is on its social aspects, the CONEVAL also addresses the program’s overall performance, reaching generally favorable conclusions. Namely, the PROMAC’s design is considered adequate (CONEVAL 2016); the program reached most of its goals for 2014, except as refers to the number of localities covered, which fell short by 5 percentage points (CONEVAL 2015).

  16. The PROMAC operates exclusively in natural protected areas, their zones of influence and other priority conservation areas—i.e., Áreas de Protección de Flora y Fauna Otoch Ma'ax Yetel Kooh, Bala'an K'aax and Yum-Balam; Biosphere Reserves Ría Lagartos, Calakmul, Los Petenes and Sian Ka'an—all of which are located outside maize’s geographic distribution in Yucatan (CONABIO 2011; J.J. Arriola, CONANP, personal communication).

  17. The authority in CONANP directly responsible for the PROMAC’s operation—J.J. Arriola, Director of Alternative Productive Activities—submits that, nominally, program transfers do not limit or restrict farmers from practicing “ancestral” seed improvement, hybridization and exchange (Arriola, pers. communication).

  18. The ultimate goal of all Mexican policy is social: “Economic growth is not a goal in itself, but a means to promote development, reduce poverty and raise the population’s standard of living” (Gobierno de la República 2013).

  19. The PROMAC’s currently covers only 1.8% of its target population (CONEVAL, 2015b), well below the average for programs on resource conservation. Surprisingly, perhaps due to its reduced scale, the CONEVAL (2016) recommends fusing the PROMAC under the CONANP’s management with other small-scope, threatened-species conservation programs, e.g., PACE Vaquita.

References

  • Abler DG (2001) Elasticities of substitution and factor supply in Canadian, Mexican and United States agriculture. OECD, Paris

    Google Scholar 

  • Aguirre Gómez JA, Bellon MR, Smale M (2000) A regional analysis of maize biological diversity in Southeastern Guanajuato, Mexico. Econ Bot 54(1):60–72

    Article  Google Scholar 

  • Alix-Garcia J et al (2005) An assessment of Mexico’s Payment for Environmental Services Program. Manuscript prepared for the United Nations Food and Agriculture Organization (FAO)

  • Anderson E (1946) Maize in Mexico a preliminary survey. Ann Mo Bot Gard 33:147–247

    Article  Google Scholar 

  • Anderson E (1947) Field studies of Guatemalan maize. Ann Mo Bot Gard 34:433–467

    Article  Google Scholar 

  • Anderson E, Cutler HC (1942) Races of Zea mays: I, Their recognition and classification. Ann Mo Bot Gard 29:69–88

    Article  Google Scholar 

  • Angelsen A (2007) Forest cover change in space and time: combining the Von Thunen and forest transition theories. World Bank Policy research working paper, 4117

  • Aragon-Cuevas F et al (2004) Conservación in situ y mejoramiento participativo de la milpa en Oaxaca, México. In: Chávez-Servia JL, Tuxill J, Jarvis DI (eds) Manejo de la diversidad de los cultivos en los agroecosistemas tradicionales. Instituto Internacional de Recursos Fitogenéticos (IPGRI), Cali

    Google Scholar 

  • Arias L et al (2004) Conservación in situ de la biodiversidad de las variedades locales en la milpa de Yucatán, México. In: Chávez-Servia JL, Tuxill J, Jarvis DI (eds) Manejo de la diversidad de los cultivos en los agroecosistemas tradicionales. Instituto Internacional de Recursos Fitogenéticos (IPGRI), Cali

    Google Scholar 

  • Arias LM, Latournerie L, Montiel S, Sauri E (2007) Cambios recientes en la diversidad de maíces criollos de Yucatán, México. Universidad y Ciencia 23:69–73

    Google Scholar 

  • Arteaga MC et al (2016) Genomic variation in recently collected maize landraces from Mexico. Genom Data 7:38–45

    Article  PubMed  Google Scholar 

  • ASERCA (2015) Informe de resultados al cuarto trimestre: incentivos a la comercialización, Ejercicio Fiscal 2015. SAGARPA, México

    Google Scholar 

  • Astier M et al (2010) Participatory identification and mapping of maize diversity in the Pátzcuaro–Zirahuén Basins, Michoacán, Mexico. J Maps. doi:10.4113/jom.2010.1101

    Google Scholar 

  • Bebber DP, Ramotowski MAT, Gurr SJ (2013) Crop pests and pathogens move polewards in a warming world. Nat Clim Change. doi:10.1038/nclimate1990

    Google Scholar 

  • Bellon MR (2004) Conceptualizing interventions to support on-farm genetic resource conservation. World Dev 32:159–172

    Article  Google Scholar 

  • Bellon MR, Berthaud J (2004) Traditional Mexican agricultural systems and the potential impacts of transgenic varieties on maize diversity. Agric Hum Values 23:3–14

    Article  Google Scholar 

  • Bellon MR, Hellin J (2011) Planting hybrids, keeping landraces: agricultural modernization and tradition among small-scale maize farmers in Chiapas, Mexico. World Dev 39:1434–1443

    Article  Google Scholar 

  • Bellon MR, Risopoulos J (2001) Small-scale farmers expand the benefits of improved maize germplasm: a case study from Chiapas, Mexico. World Dev 29(5):799–811

    Article  Google Scholar 

  • Bellon MR, Taylor JE (1993) “Folk” soil taxonomy and the partial adoption of new seed varieties. Econ Dev Cult Change 41:763–786

    Article  Google Scholar 

  • Bellon MR, van Etten J (2014) Climate change and on-farm conservation of crop landraces in centres of diversity. In: Jackson M, Ford-Lloyd B, Parry ML (eds) Plant genetic resources and climate change. CABI Publishing, NY, pp 137–150

    Google Scholar 

  • Bellon MR, Pham J-L, Jackson MT (1997) Genetic conservation: a role for rice farmers. In: Maxted N, Ford-Lloyd BF, Hawkes JG (eds) Plant genetic conservation: the in situ approach. Chapman and Hall, London

    Google Scholar 

  • Bellon MR, Hodson D, Hellin J (2011) Assessing the vulnerability of traditional maize seed systems in Mexico to climate change. Proc Natl Acad Sci USA 108:13432–13437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birol E, Villalba ER, Smale M (2007) Farmer preferences for milpa diversity and genetically modified maize in Mexico: a latent class approach. IFPRI discussion paper no. 726, International Food Policy Research Institute (IFPRI), Washington, DC

  • Boyce JK (1996) Ecological distribution, agricultural trade liberalization, and in situ genetic diversity. J. Income Distribution 6(2):265–286

    Google Scholar 

  • Brooks J, Dyer G, Taylor JE (2008) Modelling agricultural trade and policy impacts in less developed countries. OECD food, agriculture and fisheries working papers no. 11

  • Brush SB (1998) Bio-cooperation and the benefits of crop genetic resources: the case of Mexican Maize. World Dev 26(5):755–766

    Article  Google Scholar 

  • Brush SB (2004) Farmers’ bounty: locating crop diversity in the contemporary world. Yale University Press, New Haven

    Book  Google Scholar 

  • Brush SB, Meng E (1998) Farmers’ valuation and conservation of crop genetic resources. Genet Resour Crop Evol 45:139–150

    Article  Google Scholar 

  • Brush SB, Perales HR (2007) A maize landscape: ethnicity and agrobiodiversity in Chiapas Mexico. Agric Ecosyst Environ 121:211–221

    Article  Google Scholar 

  • Brush SB, Bellon Corrales M, Schmidt E (1988) Agricultural development and maize diversity in Mexico. Hum Ecol 16(3):307–328

    Article  Google Scholar 

  • Brush SB, Taylor JE, Bellon MR (1992) Technology adoption and biological diversity in Andean potato agriculture. J Dev Econ 39:365–387

    Article  Google Scholar 

  • Burgos May LA, Chávez Servia JL, Ortiz Cereceres J (2004) Variabilidad morfológica de maíces criollos de la península de Yucatán, México. In: Chávez-Servia JL, Tuxill J, Jarvis DI (eds) Manejo de la diversidad de los cultivos en los agroecosistemas tradicionales. Instituto Internacional de Recursos Fitogenéticos (IPGRI), Cali

    Google Scholar 

  • Camacho Villa TC, Chávez Servia JL (2004) Diversidad morfológica del maíz criollo de la región centro de Yucatán, México. In: Chávez-Servia JL, Tuxill J, Jarvis DI (eds) Manejo de la diversidad de los cultivos en los agroecosistemas tradicionales. Instituto Internacional de Recursos Fitogenéticos (IPGRI), Cali

    Google Scholar 

  • Camacho Villa TC, Maxted N, Scholten M, Ford-Lloyd B (2005) Defining and identifying crop landraces. Plant Genet Resour 3(3):373–384

    Article  Google Scholar 

  • Challinor AJ, Koehler A-K, Ramirez-Villegas J, Whitfield S, Das B (2016) Current warming will reduce yields unless maize breeding and seed systems adapt immediately. Nat Clim Change 6(10):954–958

    Article  Google Scholar 

  • Chávez-Servia JL, Diego-Flores P, Carrillo-Rodríguez JC (2011) Complejos raciales de poblaciones de maíz evaluadas en San Martín Huamelulpan, Oaxaca. Ra Ximhai 7(1):107–115

    Google Scholar 

  • CONABIO (2011) Recopilación, generación, actualización y análisis de información acerca de la diversidad genética de maices y sus parientes silvestres en México. CONABIO. http://www.biodiversidad.gob.mx/genes/proyectoMaices.html

  • CONANP (2014) Evaluación de consistencia y resultados del Programa de Conservación de Maíz Criollo (PROMAC) 2011. http://www.conanp.gob.mx/acciones/evaluacion_promac_2011.php. Accessed 14 Aug 2016

  • CONANP (2015) Lineamientos internos para el otorgamiento de apoyos del Programa de Conservación de Maíz Criollo (PROMAC), Ejercicio Fiscal 2015. CONANP, SEMARNAT, México

    Google Scholar 

  • CONANP (2016) PROMAC 2015. http://www.conanp.gob.mx/maiz_criollo/promac_2015.php. Accessed 14 Aug 2016

  • CONEVAL (2015) Evaluación Específica de Desempeño 2014-2015 del Programa de Conservación del Maíz Criollo. http://www.coneval.org.mx/Evaluacion/Documents/EVALUACIONES/EED_2014_2015/SEMARNAT/U029_PROMAC/U029_PROMAC_IE.pdf. Accessed 8 Aug 2016

  • CONEVAL (2016) Evaluación integral del desempeño de los programas federales de conservación y protección del medio ambiente 2014–2015. http://www.coneval.org.mx/Evaluacion/IEPSM/IET/Documents/2014/Medio_ambiente.pdf. Accessed 8 Aug 2016

  • De Janvry A, Sadoulet E, Gordillo de Anda G (1995) NAFTA and Mexico’s maize producers. World Dev 23(8):1349–1362

    Article  Google Scholar 

  • De la Barrera E, Orozco-Martínez (2016) Socio-ecological considerations on the persistence of Mexican heirloom maize. Maydica 61:1–10

    Google Scholar 

  • Dennis JV (1987) Farmer management of rice variety diversity in northern Thailand. PhD Dissertaion, Cornell University

  • Diario Oficial, (2013) Programa Sectorial de Desarrollo Agropecuario, Pesquero y Alimentario 2013–2018. Diciembre 13, 2014

  • Diario Oficial (2014) Presupuesto de Egresos de la Federación para el Ejercicio Fiscal 2015. Diciembre 3, 2014

  • Diario Oficial (2015) Reglas de Operación del Programa Nacional Forestal 2016. Diciembre 31, 2015

  • Doebley J, Goodman MM, Stuber CW (1985) Isozyme variation in races of maize from Mexico. Am J Bot 72:629–639

    Article  CAS  Google Scholar 

  • Dyer GA (2002) The cost of in situ conservation of maize landraces in the Sierra Norte de Puebla, Mexico. PhD Dissertation, University of California, Davis

  • Dyer GA (2006) Crop valuation and farmer response to change: implications for in situ conservation. In: Smale M (ed) Valuing the biological diversity of crops in a development context. IPGRI, CABI, Wallingford

    Google Scholar 

  • Dyer GA (2008) Implicaciones de los cambios en el precio internacional del maíz sobre el uso del suelo en México. IDBDOCS #1774958-v1-ME-T1014, Inter-American Development Bank

  • Dyer GA (2015) La política para el sector maicero. In: Naude Yúnez et al (eds) La economía del campo mexicano: Tendencias y retos para su desarrollo. El Colegio de México, México, pp 493–504

    Google Scholar 

  • Dyer GA, López-Feldman A (2013) Inexplicable or simply unexplained? The management of maize seed in Mexico. PLoS ONE 8(6):e68320. doi:10.1371/journal.pone.0068320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dyer GA, Nijnik M (2013) Implications of carbon forestry programs on local livelihoods and leakage. Ann For Sci. doi:10.1007/s13595-013-0293-9

    Google Scholar 

  • Dyer GA, Taylor JE (2008) A crop population perspective on maize seed systems in Mexico. Proc Natl Acad Sci USA 105:470–475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dyer GA, Taylor JE (2011) The corn price surge: impacts in rural Mexico. World Dev 39:1878–1887

    Article  Google Scholar 

  • Dyer GA, Yúnez-Naude A (2003) NAFTA y la conservación de la diversidad de maíz en México. Comisión para la Cooperación Ambiental

  • Dyer G, Taylor JE, Boucher S (2006) Subsistence response to market shocks. Am J Agric Econ 88(2):279–291

    Article  Google Scholar 

  • Dyer GA, Serratos A et al (2009) Escape and dispersal of transgenes through maize seed systems in Mexico. PLoS ONE 4(5):e5734. doi:10.1371/journal.pone.0005734

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dyer GA, López-Feldman A, Yúnez-Naude A, Taylor JE (2014) Genetic erosion in maize’s center of origin. Proc Natl Acad Sci USA 111:14094–14099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dyer G, Yúnez-Naude A, Becerril J (2015) Costos y beneficios del maíz Bt en México: Un análisis de equilibrio general. Manuscript prepared for the Comisión Intersecretarial de Bioseguridad de los Organismos Genéticamente Modificados (CIBIOGEM), Mexico

  • Eakin H, Perales H, Appendini K, Sweeney S (2014) Selling maize in Mexico: the persistence of peasant farming in an era of global markets. Dev Change 45:133–155

    Article  Google Scholar 

  • FAO/IPGRI (2002) The role of women in the conservaton of the genetic resources of maize: Guatemala. Food and Agriculture Organization, International Plant Genetic Resources Institute, Rome

    Google Scholar 

  • Fenzi M, Jarvis DI, Arias Reyes LM, Latournerie Moreno L, Tuxill J (2015) Longitudinal analysis of maize diversity in Yucatan, Mexico: influence of agro-ecological factors on landraces conservation and modern variety introduction. Plant Genet Resour. doi:10.1017/S1479262115000374

    Google Scholar 

  • Fitting E (2006) Importing corn, exporting labor: the neoliberal corn regime, GMOs, and the erosion of Mexican biodiversity. Agric Hum Values 23:15–26

    Article  Google Scholar 

  • Fox J, Haight L (eds) (2010) Subsidizing inequality: Mexican corn policy since NAFTA. Woodrow Wilson International Center for Scholars, Washington, DC

  • Frankel OH, Bennett E (eds) (1970) Genetic resources in plants. IBP Handbook 11, Philadelphia

  • Garcia Barrios L, Garcia Barrios R (1990) Environmental and technological degradation in peasant agricultura: a consequence of development in Mexico. World Dev 18:1569–1585

    Article  Google Scholar 

  • Gil-Muñoz A, López PA, Muñoz Orozco A, López Sánchez H (2004) Variedades criollas de maíz (Zea mays L.) en el estado de Puebla, México: diversidad y utilización. In: Chávez-Servia JL, Tuxill J, Jarvis DI (eds) Manejo de la diversidad de los cultivos en los agroecosistemas tradicionales. Instituto Internacional de Recursos Fitogenéticos (IPGRI), Cali

    Google Scholar 

  • Gobierno de la República (2013) Plan Nacional de Desarrollo 2013–2018. México

  • Goman M, Byrne R (1998) A 5000-year record of agriculture and tropical forest clearance in the Tuxtlas, Veracruz, Mexico. Holocene 8:83–89

    Article  Google Scholar 

  • Goodman MM, Bird RMK (1977) The races of maize. IV. Tentative grouping of 219 Latin American races. Econ Bot 31:204–221

    Article  Google Scholar 

  • Guarino L (no date) Approaches to measuring genetic erosion. http://www.fao.org/wiews-archive/Prague/Paper3.jsp. Accessed 21 July 2016

  • Hernández Xolocotzi E, Alanis Flores G (1970) Estudio morfológico de cinco nuevas razas de maíz de la Sierra Madre Occidental de México. Agrociencia 5:3–30

    Google Scholar 

  • Hernández Xolocotzi E, Ortega Paczka R (1973) Variación en maíz y cambios socioeconómicos en Chiapas, México, 1946–1971. Avances en la Ensenanza y la Investigacion en el Colegio de Posgraduados, pp 11–12

  • Herrera-Cabrera BE et al (2004) Diversity of Chalqueño maize. Agrociencia 38(2):191–206

    Google Scholar 

  • Hortelano Santa Rosa R, Santacruz Varela A, Gil Muñoz A et al (2011) Isoenzymatic variation of maize landraces from the región Llanos de Serdán, Puebla. Revista Mexicana de Ciencias Agrícolas 2(6):885–899

    Google Scholar 

  • Hortelano Santa Rosa R, Gil Muñoz A, Santacruz Varela A et al (2012) Diversidad fenotípica de maíces nativos del altiplano centro-oriente estado de Puebla, México. Rev Fitotec Mex 35(2):97–109

    Google Scholar 

  • Inzunza Mascareño FR (1988) El proceso de producción agrícola en la porción oriental de Sierra Norte de Puebla. Thesis. Universidad Autónoma de Chapingo, Mexico

  • Isakson SR (2011) Market provisioning and the conservation of crop biodiversity: an analysis of peasant livelihoods and maize diversity in the Guatemalan Highlands. World Dev 39:1444–1459

    Article  Google Scholar 

  • Jack BK, Kousky C, Sims KRE (2008) Designing payments for ecosystem services: lessons from previous experience with incentive-based mechanisms. Proc Natl Acad Sci USA 105:9465–9470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jarvis DI, Myer L, Klemick H, Guarino L, Smale M, Brown AHD, Sadiki M, Sthapit B, Hodgkin T (2000) A training guide for in situ conservation on-farm. Version 1. IPGRI, Rome

    Google Scholar 

  • Jarvis DI et al (2008) A global perspective of the richness and evenness of traditional crop-variety diversity maintained by farming communities. Proc Natl Acad Sci USA 105:5326–5331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kato TA (1984) Chromosome morphology and the origin of maize and its races. Evol Biol 17:219–253

    Article  Google Scholar 

  • Key N, Sadoulet E, de Janvry A (2000) Transaction costs and agricultural household supply response. Am J Agric Econ 82:245–259

    Article  Google Scholar 

  • King A (2006) Ten years with NAFTA: a review of the literature and an analysis of farmer responses in Sonora and Veracruz, Mexico. CIMMYT Special Report 06-01. CIMMYT/Congressional Hunger Center, Mexico

  • Latournerie ML et al (2006) Traditional maize storage methods of Mayan farmers in Yucatan, Mexico: implications for seed selection and crop diversity. Biodivers Conserv 15:1771–1795

    Article  Google Scholar 

  • Lazos E, Chauvet M (2012) Análisis del context social y biocultural de las colectas de maíces nativos en México. www.biodiversidad.gob.mx/genes/pdf/analisis_socio_cultural_maices.pdf. Accessed 19 July 2016

  • Lesk C et al (2016) Influence of extreme weather disasters on global crop production. Nature 529:83–88

    Article  CAS  Google Scholar 

  • Levy S, van Wijnbergen S (1994) Labor markets, migration and welfare: agriculture in the North-American Free Trade Agreement. J Dev 43:263–278

    Google Scholar 

  • Liu J, Mooney H, Hull V, Sj Davis, Gaskell J, Hertel T, Lubchenco J, Seto KC, Gleick P, Kremen C, Shuxin Li (2015) Systems integration for global sustainability. Science. doi:10.1126/science.1258832

    Google Scholar 

  • Lope-Alzina D (2002) The participation of farm women in the milpa system of the Yucatán, Mexico: production spaces and agricultural biodiversity. In: Smale M, Mar I, Jarvis DI (eds) The economics of conserving agricultural biodiversity on-farm. International Plant Genetic Resources Institute, Rome

    Google Scholar 

  • López R, Nash J, Stanton J (1995) Adjustment and poverty in Mexican agriculture. Policy research working paper 1494, The World Bank, Washington, DC

  • Louette D, Charrier A, Berthaud J (1997) In situ conservation of maize in Mexico: genetic diversity and maize management in a traditional community. Econ Bot 51:20–38

    Article  Google Scholar 

  • Maldonado JH et al (eds) (2016) Protección, producción, promoción: explorando sinergias entre protección social y fomento productivo rural en América Latina. Ediciones Uniandes, Universidad de los Andes, Bogotá

    Google Scholar 

  • Mangelsdorf PC (1974) Corn: its origin, evolution, and improvement. Belknap, Harvard University Press, Cambridge

    Book  Google Scholar 

  • Mangelsdorf PC, MacNeish RS, Galinat WC (1964) Domestication of corn. Science 143:538–545

    Article  CAS  PubMed  Google Scholar 

  • Mera LM (2009) Diversificación y distribución reciente del maízen México. In: Kato TA, Mapes C, Mera LM, Serratos JA, Bye RA (eds) Origen y diversificación del maíz: Una revisión analítica. UNAM-CONABIO, Mexico

  • Mijangos-Cortés JO et al (2007) Differentiation among maize (Zea mays L.) landraces from the Tarasca mountain chain, Michoacan, Mexico and the Chalqueno complex. Genet Resour Crop Evol 54:309–325

    Article  Google Scholar 

  • Mora C et al (2013) The projected timing of climate departure from recent variability. Nature 502:183–187

    Article  CAS  PubMed  Google Scholar 

  • Motamed M, Foster KA, Tyner WE (2008) Applying cointegration and error correction to measure trade linkages: maize prices in the United States and Mexico. Agric Econ 39:29–39

    Article  Google Scholar 

  • Muñoz Piña C et al (2008) Paying for hydrological services of Mexico’s forests: analysis, negotiations and results. Ecol Econ 65(4):725–736

    Article  Google Scholar 

  • Muñozcano Ruiz M (2011) Diversidad genética del maíz, perspectivas para su conservación y desarrollo en una comunidad Mixteca de Oaxaca: Santa María Tataltepec. Tesis de Maestría, Colegio de Postgraduados, Montecillo, México

  • Orozco-Ramírez Q, Astier M (2016) Socio-economic and environmental changes related to maize richness in Mexico’s central highlands. Agric Hum Values. doi:10.1007/s10460-016-9720-5

    Google Scholar 

  • Orozco-Ramírez Q, Perales H, Hijmans RJ (2016) Geographical distribution and diversity of maize (Zea mays L. subsp. mays) races in Mexico. Genet Resour Crop Evol. doi:10.1007/s10722-016-0405-0

  • Ortega Paczka R (2003) La diversidad del maíz en México. In: Esteva G, Marielle C (eds) Sin Maíz No Hay País. Conaculta, Mexico, pp 123–154

    Google Scholar 

  • Pagiola S, Arcenas A, Platais G (2005) Can payments for environmental services help reduce poverty? An exploration of the issues and the evidence to date from Latin America. World Dev 33(2):237–253

    Article  Google Scholar 

  • Perales H, Golicher D (2014) Mapping the diversity of maize races in Mexico. PLoS ONE 9:e114657

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Perales H, Brush SB, Qualset CO (2003) Dynamic management of maize landraces in central Mexico. Econ Bot 57:21–34

    Article  Google Scholar 

  • Perales RH, Benz BF, Brush SB (2005) Maize diversity and ethnolinguistic diversity in Chiapas, Mexico. Proc Natl Acad Sci USA 102:949–954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piperno DR et al (2007) Late Pleistocene and Holocene environmental history of the Iguala Valley, Central Balsas Watershed of Mexico. Proc Natl Acad Sci USA 104:11874–11881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pita Duque A (2010) Impact on maize diversity of Mexican farmers’ participation in off-farm labor markets. PhD Dissertation, University of California, Davis

  • Pope KO et al (2001) Origin and environmental setting of ancient agriculture in the lowlands of Mesoamerica. Science 292:1370–1373

    Article  CAS  PubMed  Google Scholar 

  • Pressoir G, Berthaud J (2004) Population structure and strong divergent selection shape phenotypic diversification in maize landraces. Heredity 92:95–101

    Article  CAS  PubMed  Google Scholar 

  • Quist D, Chapela IH (2001) Transgenic DNA introgressed into traditional maize landraces in Oaxaca, Mexico. Nature 414:541–543

    Article  CAS  PubMed  Google Scholar 

  • Ramírez Jaspeado A (2012) Caracterización socioeconómica, morfológica y bioquímica de una muestra etnográfica de maíz (Zea mays L.) raza bolita. Tesis de Doctorado, Colegio de Postgraduados, Montecillo, México

  • Ramos Rodríguez A, Hernández Xolocotzi E (1972) Variación morfológica de los maíces de la zona oriental del Estado de México y del centro de Puebla, México. I Congreso Latinoamericano de Botánica, Resúmenes, pp 119–120

    Google Scholar 

  • Rice E (2007) Conservation in a changing world: in situ conservation of the giant maize of Jala. Genet Resour Crop Evol 54:701–713

    Article  Google Scholar 

  • Rice E, Smale M, Blanco JL (1997) Farmers’ use of improved seed selection practices in Mexican Maize: evidence and issues from the Sierra de Santa Marta. World Dev 26(9):1625–1640

    Article  Google Scholar 

  • Robinson S, Burfisher ME, Hinojosa-Ojeda R, Thierfelder KE (1993) Agricultural policies and migration in a US–Mexico Free Trade Area: a computable general equilibrium analysis. J Policy Model 15(5–6):673–701

    Article  Google Scholar 

  • Rodríguez-Pérez G et al (2012) Diversidad de maíces criollos de Nuevo León, México, mediante AFLP y caracteres morfológicos. Agronomía Mesoamericana 23(2):29–39

    Article  Google Scholar 

  • Romero Peñaloza J, Castillo GF, Ortega Paczka R (2002) Cruzas de poblaciones nativas de maı´z de la raza Chalqueño: II grupos genéticos, divergencia y heterosis. Rev Fitotec Mex 25(1):107–115

    Google Scholar 

  • Ruiz Corral JA, Duran N, Sánchez JJ, Ron J, Gonzalez DR et al (2008) Climatic adaptation and ecological descriptors of 42 Mexican maize races. Crop Sci 48:1502–1512

    Article  Google Scholar 

  • Sadiki M et al (2007) Variety names: an entry point to crop genetic diversity and distribution in agroecosystems? In: Jarvis DI, Padoch C, Cooper D (eds) Managing biodiversity in agricultural ecosystems. Columbia University Press, New York, pp 34–76

    Google Scholar 

  • Sánchez JJ (2011) Diversidad del Maiz y el Teocintle. http://www.biodiversidad.gob.mx/genes/pdf/proyecto/Anexo9_Analisis_Especialistas/Jesus_Sanchez_2011.pdf. Accessed 28 June 2014

  • Sánchez JJ, Goodman MM, Stuber CW (2000) Isozymatic and morphological diversity in the races of maize in Mexico. Econ Bot 54:43–59

    Article  Google Scholar 

  • Serratos-Hernández JA, Gómez-Olivares JL, Salinas-Arreortua N, Buendía-Rodriguez E, Islas-Gutiérrez F, de-Ita A (2007) Transgenic proteins in maize in the soil conservation area of Federal District, Mexico. Front Ecol Environ 5:247–252

    Article  Google Scholar 

  • Smale M (2006) Concepts, metrics and plan of the book. In: Smale M (ed) Valuing the biological diversity of crops in a development context. IPGRI, CABI, Wallingford

    Google Scholar 

  • Smale M, Bellon MR (1999) A conceptual framework for valuing on-farm genetic resources. In: Wood D, Lenné JM (eds) Agrobiodiversity: characterization, utilization and management. Allen and Unwin, London

    Google Scholar 

  • Smale M, Bellon M, Pingali PM (1998) Farmers, gene banks, and crop breeding: introduction and overview. In: Smale M (ed) Farmers, gene banks and crop breeding. CIMMYT, Kluwer, Boston, pp 3–17

    Google Scholar 

  • Smale M, Aguirre A, Bellon M, Mendoza J and Manuel Rosas I (1999) Farmer management of maize diversity in the central valleys of Oaxaca, Mexico. CIMMYT economics working paper 99-09. CIMMYT, Mexico, DF

  • Smale M, Bellon MR, Aguirre Gómez JA (2001) Maize diversity, variety attributes, and farmers’ choices in Southeastern Guanajuato, Mexico. Econ Dev Cult Change 50(1):201–225

    Article  Google Scholar 

  • Snively-Martínez AE (2009) Perceptions of change in horticultural subsistence strategies in a rural Mexican Community: San Francisco Pichátaro, Michoacán. Masters Thesis. Washington State University

  • Steinberg MK, Taylor MJ (2009) The direct and indirect impacts of population growth and economic development on maize (Zea mays L.) diversity in highland Guatemala. Area 41:72–81

    Article  Google Scholar 

  • Stuber CW, Goodman MM, Johnson FM (1977) Genetic control and racial variation of B-glucosidase isozymes in maize (Zea mays L.). Biochem Genet 15:383–394

    Article  CAS  PubMed  Google Scholar 

  • Tuxill J (2004) Effects of a regional drought on local management of seed stocks of maize, beans, and squash in central Yucatan state, Mexico: preliminary findings. In: Chávez-Servia JL, Tuxill J, Jarvis DI (eds) Manejo de la diversidad de los cultivos en los agroecosistemas tradicionales. Instituto Internacional de Recursos Fitogenéticos (IPGRI), Cali

    Google Scholar 

  • Van de Wouw M, Kik C, van Hintum T, van Treuren R, Visser B (2010) Genetic erosion in crops: concept, research results and challenges. Plant Genet Resour 8:1–15. doi:10.1017/S1479262109990062

    Article  Google Scholar 

  • Van Dusen ME, Taylor JE (2005) Missing markets and crop diversity: evidence from Mexico. Environ Dev Econ 10:513–531

    Article  Google Scholar 

  • Van Heerwaarden J, van Eeuwijk FA, Ross-Ibarra J (2010) Genetic diversity in a crop metapopulation. Heredity 104:28–39

    Article  PubMed  Google Scholar 

  • Vigoroux Y et al (2005) An analysis of genetic diversity across the maize genome using microsatellites. Genetics 169:1617–1630

    Article  CAS  Google Scholar 

  • Wallace HA, Brown WL (1956) Corn and its early fathers. Michigan State University Press, Lansing

    Google Scholar 

  • Wellhausen EJ, Roberts LM, Hernandez E, Mangelsdorf PC (1952) Races of maize in Mexico: their origin, characteristics, and distribution. Bussey Institution, Harvard University, Cambridge

    Google Scholar 

  • Wilkes HG (1972) Maize and its wild relatives. Science 177:1071–1077

    Article  CAS  PubMed  Google Scholar 

  • Wunder S, Engel S, Pagiola S (2008) Taking stock: a comparative analysis of payments for environmental services programs in developed and developing countries. Ecol Econ 65:834–852

    Article  Google Scholar 

  • Yúnez Naude A et al (2016) El programa de combate a la pobreza y las políticas de desarrollo rural en México: evaluación de impactos y opciones de políticas alternativas. In: Maldonado JH et al (eds) Protección, producción, promoción: explorando sinergias entre protección social y fomento productivo rural en América Latina. Ediciones Uniandes, Universidad de los Andes, Bogotá

    Google Scholar 

Download references

Acknowledgements

We thank José Juan Arriola (CONANP) and Francisca Acevedo (CONABIO) for their comments on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Dyer.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dyer, G.A., López-Feldman, A. & Yúnez-Naude, A. Maize (Zea mays L.) management in Yaxcaba, Yucatan, during the twentyfirst century’s first decade is consistent with an overall loss of landrace diversity in southeast Mexico. Genet Resour Crop Evol 65, 29–54 (2018). https://doi.org/10.1007/s10722-017-0507-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-017-0507-3

Keywords

Navigation