Skip to main content
Log in

Agronomic, chemical and genetic variability of saffron (Crocus sativus L.) of different origin by LC-UV–vis-DAD and AFLP analyses

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

The identification of a bi-univocal correspondence between geographical origin of saffron (Crocus sativus L.) and the composition of its stigmas has recently been the subject of many research papers, which have focused on the analysis of the differences among the so called “minor components”, such as flavonoids and volatiles, in the secondary metabolic pattern of this spice. Saffron pigments (crocetin esters), on the other hand, constitute the majority of the metabolites found in its stigmas, and their spectrophotometric measurement is still used as an official method to determine the quality of the spice in terms of coloring power. To our knowledge, no attempts have been made to find a correspondence between the geographical origin of different saffron samples and their morphological traits and pigments pattern. In this paper, we have demonstrated that saffron corms of different origins, grown in the same experimental field, produce daughter corms with different dimensions and still produce stigma samples with different pigment profiles. Furthermore, daughter corm dimensions and pigment profile even more so, may be related to the origin of the sample, and therefore pigments can be used as chemotaxonomic markers. Compositional analyses results were corroborated by genetic data obtained using AFLP molecular markers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdullaev FI (2002) Cancer chemopreventive and tumoricidal properties of saffron (Crocus sativus L.). Exper Biol Med 227:20–25

    CAS  Google Scholar 

  • Abdullaev FI, Espinosa-Aguirre JJ (2004) Biomedical properties of saffron and its potential use in cancer therapy and chemoprevention trials. Cancer Det Prev 28:426–432

    Article  CAS  Google Scholar 

  • Alavi-Kia SS, Mohammadi SA, Aharizad S, Moghaddam M (2008) Analysis of genetic diversity and phylogenetic relationships in Crocus genus of Iran using inter-retrotransposon amplified polymorphism. Biotech Biotechnol Eq 22:795–800

    CAS  Google Scholar 

  • Albertini E, Torricelli R, Bitocchi E, Raggi L, Marconi G, Pollastri L, Di Minco G, Battistini A, Papa R, Veronesi F (2011) Structure of genetic diversity in Olea europaea L. cultivars from central Italy. Mol Breed 27:533–547

    Article  Google Scholar 

  • Botstein D, White RL, Skolnick M, Davies RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphism. Am J Hum Genet 32:314–331

    PubMed  CAS  Google Scholar 

  • Bouvier F, Suire C, Muttener J, Camara B (2003) Oxidative remodeling of chromoplast carotenoids: identification of the carotenoid dioxygenase CsCCD and CSZCD genes involved in crocus secondary metabolite biogenesis. Plant Cell 15:47–62

    Article  PubMed  CAS  Google Scholar 

  • Brandizzi F, Grilli Caiola M (1998) Flow cytometric analysis if nuclear DNA in Crocus sativus and allies (Iridacee). Plant Syst Evol 211:149–154

    Article  Google Scholar 

  • Buchecker R, Eugster CH (1973) Absolute configuration of picrocrocin. Helv Chim Acta 56:1121–1125

    Article  CAS  Google Scholar 

  • Camara B, Bouvier F (2004) Oxidative remodeling of plastid carotenoids. Arch Biochem Biophys 430:16–21

    Article  PubMed  CAS  Google Scholar 

  • Carmona M, Zalacain A, Sanchez AM, Novella JL, Alonso GL (2006) Crocetin esters, picrocrocin and its related compounds present in Crocus sativus stigmas and Gardenia jasminoides fruits. Tentative identification of seven new compounds by LC-ESI-MS. J Agric Food Chem 54:973–979

    Article  PubMed  CAS  Google Scholar 

  • Castillo R, Fernandez JA, Gomez-Gomez L (2005) Implications of carotenoid biosynthetic genes in apocarotenoid formation during the stigma development of Crocus sativus and its closer relatives. Plant Physiol 139:674–689

    Article  PubMed  CAS  Google Scholar 

  • Chichiriccò G (1984) Karyotype and meiotic behaviour of the triploid Crocus sativus L. Caryologia 37:233–239

    Google Scholar 

  • Cnops G, Den Boer B, Gerats A, Van Montagu M, Van Lijsebettens M (1996) Chromosome landing at the Arabidopsis Tornado1 locus using an AFLP-based strategy. Mol Gen Genet 253:32–41

    Article  PubMed  CAS  Google Scholar 

  • Corti P, Mazzei E, Ferri S, Franchi GG, Drenassi E (1996) High performance thin layer chromatographic quantitative analysis of picrocrocin and crocetin, active principles of Saffron (Crocus sativus L.—Iridaceae): a new method. Phytochem Anal 7:201–203

    Article  CAS  Google Scholar 

  • Del Campo CP, Carmona M, Maggi L, Kanakis CD, Anastasaki EG, Tarantilis PA, Polissiou MG, Alonso GL (2010) Picrocin content and quality catefories in different (345) worldwide samples of saffron (Crocus sativus L.). J Agric Food Chem 58:1305–1312

    Article  PubMed  Google Scholar 

  • Fernández JA (2004) Biology, biotechnology and biomedicine of saffron. Recent Res Devel Plant Sci 2:127–159

    Google Scholar 

  • Fluch S, Hohl K, Stierschneider M, Kopecky D, Kaar B (2010) Crocus sativus L. Molecular evidence on its clonal origin. Acta Hort (ISHS) 850:41–46

    CAS  Google Scholar 

  • Freund RJ, Wilson WJ (2003) Statistical methods. Academic Press, San Diego, USA, CA

    Google Scholar 

  • Gresta F, Lombardo GM, Siracusa L, Ruberto G (2008a) Saffron, an alternative crop for sustainable agricultural systems: a review. Agron Sustain Dev 28:95–112

    Article  CAS  Google Scholar 

  • Gresta F, Lombardo GM, Siracusa L, Ruberto G (2008b) Effect of mother corm dimension and sowing time on stigmas yield, daughter corms and qualitative aspects of saffron (Crocus sativus L.) in a mediterranean environment. J Sci Food Agric 88:1144–1150

    Article  CAS  Google Scholar 

  • Gresta F, Siracusa L, Avola G, Lombardo GM, Ruberto G (2009) Analysis of flowering, stigmas yield and qualitative traits of saffron (Crocus sativus L.) as affected by environmental conditions. Sci Hortic 119:320–324

    Article  Google Scholar 

  • Gresta F, Avola G, Albertini E, Raggi L, Abbate V (2010) A study of variability in the sicilian faba bean landrace ‘Larga di Leonforte’. Genet Resour Crop Evol 57:523–531

    Article  Google Scholar 

  • Grilli Caiola M (2004) Saffron reproductive biology. Acta Hortic 650:25–37

    Google Scholar 

  • Grilli Caiola M (2005) Embryo origin and development in Crocus sativus L. (Iridaceae). Plant Biosystem 139:335–343

    Article  Google Scholar 

  • Grilli Caiola M, Caputo P, Zanier R (2004) RAPD analysis in Crocus sativus L. accessions and related Crocus species. Biol Plant 48:375–380

    Article  Google Scholar 

  • Imenshahidi M, Hosseinzadeh H, Javadpour Y (2010) Hypotensive effect of aqueous saffron extract (Crocus sativus L.) and its constituents, safranal and crocin, in normotensive and hypertensive rats. Phytother Res 24:990–994

    PubMed  CAS  Google Scholar 

  • Mathew B (1982) The Crocuses: a revision of the genus Crocus. B.T Batsford, London

    Google Scholar 

  • Mousavi SH, Tayarami NZ, Parsaee H (2010) Protective effect of saffron extract and crocin on reactive oxygen species-mediated high glucose-induced toxicity in PC12 cells. Cell Mol Neurobiol 30-185–191

    Google Scholar 

  • Papandreou MA, Kanakis CD, Polissiou MG, Efthimiopoulos S, Cordopatis P, Margarity M, Lamari FN (2006) Inhibitory activity on amyloid-β-aggregation and antioxidant properties of Crocus sativus stigmas extract and its crocin constituents. J Agric Food Chem 54:8762–8768

    Article  PubMed  CAS  Google Scholar 

  • Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Dingey C, Rafalski A (1996) The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed 2:225–238

    Article  CAS  Google Scholar 

  • Rios JL, Recio MC, Giner RM, Manez S (1996) An update review of saffron and its active constituents. Phytother Res 10:189–193

    Article  CAS  Google Scholar 

  • Rubio Moraga A, Traper-Mozos A, Gómez-Gómez L, Ahrazen O (2010) Intersimple sequence repeat markers for molecular characterization of Crocus cartwrightianus cv. albus. Ind Crops Prod 32:147–151

    Article  Google Scholar 

  • Rzhetsky A, Nei M (1992) A simple method for estimating and testing minimum evolution trees. Mol Biol Evol 9:945–967

    CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Sik L, Candan F, Soya S, Karamenderes C, Kesercioglu T, Tanyolac B (2008) Genetic variation among Crocus sativus L. species from western Turkey as revealed by RAPD and ISSR markers. J Appl Biol Sci 2:73–78

    CAS  Google Scholar 

  • Siracusa L, Gresta F, Avola G, Lombardo GM, Ruberto G (2010) Influence of environmental factors and corms provenience on yield and apocarotenoid profiles of saffron (Crocus sativus L.). J Food Comp Anal 23:394–400

    Article  CAS  Google Scholar 

  • Sorkheh K, Shiran B, Gradziel T, Epperson B, Martínez-Gómez P, Asadi E (2007) Amplified fragment length polymorphism as a tool for molecular characterization of almond germplasm: genetic diversity among cultivated genotypes and related wild species of almond, and its relationships with agronomic traits. Euphytica 156:327–344

    Article  CAS  Google Scholar 

  • Sudheer Pamidimarri D, Singh S, Mastan S, Patel J, Reddy M (2009) Molecular characterization and identification of markers for toxic and non-toxic varieties of Jatropha curcas L. using RAPD, AFLP and SSR markers. Mol Biol Rep 36:1357–1364

    Article  PubMed  CAS  Google Scholar 

  • Tamaddonfard E, Hamzeh-Gooshchi N (2010) Effect of crocin on the morphine-induced antinociception in the formalin test in rats. Phytother Res 24:410–413

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Tarantilis PA, Polissiou M (1997) Isolation and identification of the aroma constituents of saffron (Crocus sativa). J Agric Food Chem 45:459–462

    Article  CAS  Google Scholar 

  • Tavakkol-Afshari J, Book A, Mousavi SH (2008) Study of cytotoxic and apoptogenic properties of saffron extract in human cancer cell lines. Food Chem Toxicol 46:3443–3447

    Article  PubMed  CAS  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Chiang T, Roux N, Hao G, Ge X (2007) Genetic diversity of wild banana (Musa balbisiana Colla) in China as revealed by AFLP markers. Gen Res Crop Evol 54:1125–1132

    Article  Google Scholar 

  • Winterhalter P, Straubinger M (2000) Saffron: renewed interest in an ancient spice. Food Rev Int 16:39–59

    Article  CAS  Google Scholar 

  • Zhang H, Zeng Y, Yan F, Chen F, Zhang X, Lui M, Lui W (2004) Semi-preparative isolation of crocins from Saffron (Crocus sativus L.). Chromatographia 59:691–696

    CAS  Google Scholar 

  • Zubor AA, Suranyi G, Gyori Z, Borbely G, Prokisch J (2004) Molecular biological approach of the systematics of Crocus sativus L. and its allies. In: Abdullaev F (ed) First international symposium on saffron biology and biotechnology, pp 85–93

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Ruberto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siracusa, L., Gresta, F., Avola, G. et al. Agronomic, chemical and genetic variability of saffron (Crocus sativus L.) of different origin by LC-UV–vis-DAD and AFLP analyses. Genet Resour Crop Evol 60, 711–721 (2013). https://doi.org/10.1007/s10722-012-9868-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-012-9868-9

Keywords

Navigation