Skip to main content
Log in

Recombination around the P locus for long glume phenotype in experimental introgression lines of Triticum aestivumTriticum polonicum

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

A set of experimental introgression lines of Triticum aestivum L. cv. Novosibirskaya 67 (N67)—Triticum polonicum L. line IC 12196 was developed using a small-scale bulk breeding method. The linkage map in chromosome 7A was constructed using F2 hybrids of N67/IC12196 and 34 microsatellite markers. The P gene was flanked by the centromeric markers, Xgwm890 (18.6 cM) and Xbarc108 (20.0 cM) on the long arm of chromosome 7A. Among 124 introgression lines, 118 lines were hexaploid (2n = 6x = 42), and 6 were tetraploid (2n = 4x = 28). Among hexaploid accessions, 68 were long-glumed, whereas 50 were normal-glumed. Thirty-four polymorphic microsatellite markers were scored for either the N67 alleles or IC 12196 alleles in 124 introgression lines derived from N67/IC 12196. The UPGMA dendrogram showed five clusters; Cluster 1 mainly contained hexaploid introgression lines with long glumes. Although the alleles around the P locus were recombined with IC1296 alleles, the distal end of the chromosome contained N67 alleles. Cluster 2 mainly contained normal glumed, hexaploid introgression lines. These predominantly had the N67 alleles on the long arm of chromosome 7A and the short arm proximal to the centromere. Cluster 3 contained long-glumed, hexaploid wheat lines with relatively high level of recombination. Cluster 4 contained non-parental alleles. Cluster 5 contained the group of tetraploid wheat lines. These tetraploid lines have IC12196 alleles on both arms of chromosome 7A. The frequency spectrum of parental alleles and chromosomal blocks among introgression lines suggested that T. aestivum – T. polonicum hybridization can rapidly give rise to a new landrace due to selective introgression of the P gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akond ASMGM, Watanabe N (2005) Genetic variation among Portuguese landraces of ‘Arrancada’ wheat and Triticum petropavlovskyi by AFLP-based assessment. Genet Resour Crop Evol 52:619–628

    Article  Google Scholar 

  • Akond ASMGM, Watanabe N, Furuta Y (2008) Comparative genetic diversity of Triticum aestivumTriticum polonicum introgression lines with long glume and Triticum petropavlovskyi by AFLP-based assessment. Genet Resour Crop Evol 54:133–144

    Article  Google Scholar 

  • Alston FH, Jones JK (1968) Variation in transmission of univalent chromosomes from pentaploid wheat hybrid. Can J Genet Cytol 10:908–912

    Google Scholar 

  • Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation: version II. Plant Mol Biol Rep 1:19–21

    Article  CAS  Google Scholar 

  • Erayman M, Sandhu D, Sidhu D, Dilbirligi M, Baenzigeret PS et al (2004) Demarcating the gene-rich regions of the wheat genome. Nucleic Acids Res 32:3546–3565

    Article  CAS  PubMed  Google Scholar 

  • Faris JD, Haen KM, Gill BS (2000) Saturation mapping of a gene-rich recombination hot spot region in wheat. Genetics 154:823–835

    CAS  PubMed  Google Scholar 

  • Kihara H (1924) Cytologische und genetische Studien bei wichtigen Getreidearten mit besonderer Rücksicht auf das Verhalten der Chromosomen und die Sterilität in den Bastarden. Mem Coll Sci Kyoto Imp Univ Ser B 1:1–200

    Google Scholar 

  • Kihara H, Wakakuwa S (1935) Weitere Untersuchungen über die pentaploiden Triticum-Bastarde. IV. Jpn J Bot 7:381–387

    Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugenics 12:172–175

    Google Scholar 

  • Kosuge K, Watanabe N, Kuboyama T, Melnik VM, Rosova MA, Yanchenko VI, Goncharov NP (2008) Cytological and microsatellite mapping of mutant genes for spherical grain and compact spikes in durum wheat. Euphytica 159:289–296

    Article  CAS  Google Scholar 

  • Lukaszewski A, Curtis CA (1993) Physical distribution of recombination in B-genome chromosome of tetraploid wheat. Theor Appl Genet 86:121–127

    Article  CAS  Google Scholar 

  • Raquin A-L, Brabant P, Rhoné B, Balfourier F, Leroy P, Goldringer I (2008) Soft selective sweep near a gene that increases plant height in wheat. Mol Ecol 17:741–756

    PubMed  Google Scholar 

  • Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier M-H, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023

    PubMed  Google Scholar 

  • Saintenac C, Falque M, Martin OC, Paux E, Feuillet C, Sourdille P (2009) Detailed recombination studies along chromosome 3B provide new insights on crossover distribution in wheat. Genetics 108:393–402

    Google Scholar 

  • See DR, Brooks S, Nelson JC, Brown-Guedira G, Friebe B et al (2006) Gene evolution at the ends of wheat chromosomes. Proc Natl Acad Sci USA 103:4162–4167

    Article  CAS  PubMed  Google Scholar 

  • Sidhu D, Gill KS (2004) Distribution of genes and recombination in wheat and other eucaryotes. Plant Cell Tissue Organ Cult 79:257–270

    Article  Google Scholar 

  • Song QJ, Shi JR, Singh S, Fikus EW, Costa JM, Lewis J, Gill BS, Ward R, Cregan PB (2005) Development and mapping of microsatellite (SSR) markers in wheat. Theor Appl Genet 110:550–560

    Article  CAS  PubMed  Google Scholar 

  • Torada A, Koike M, Mochida K, Ogihara Y (2006) SSR-based linkage map with new markers using an intraspecific population of common wheat. Theor Appl Genet 112:1042–1051

    Article  CAS  PubMed  Google Scholar 

  • Ungerer MC, Baird SJE, Pan J, Rieseberg LH (1998) Rapid hybrid speciation in wild sunflowers. Proc Natl Acad Sci USA 95:11757–11762

    Article  CAS  PubMed  Google Scholar 

  • Wang H-J, Huang X-Q, Röder MS, Börner A (2002) Genetic mapping of loci determining long glumes in the genus Triticum. Euphytica 123:287–293

    Article  CAS  Google Scholar 

  • Watanabe N (2004) Triticum polonicum IC12196: a possible alternative source of GA3-insensitive semi-dwarfism. Cereal Res Commun 32:429–434

    Google Scholar 

  • Watanabe N, Imamura I (2002) The inheritance and chromosomal location of a gene for long glume phenotype in Triticum petropavlovskyi Udacz et Migusch. J Genet Breed 57:221–227

    Google Scholar 

  • Watanabe N, Yotani Y, Furuta Y (1996) The inheritance and chromosomal location of a gene for long glume in durum wheat. Euphytica 91:235–239

    Google Scholar 

  • Watanabe N, Bannikova SV, Goncharov NP (2004) Inheritance and chromosomal location of the genes for long glume phenotype found in Portuguese landraces of hexaploid wheat, “Arrancada”. J Genet Breed 58:273–278

    Google Scholar 

Download references

Acknowledgments

N. Watanabe acknowledges Dr M.S. Röder, IPK Gatersleben for providing us unpublished primer sequences of microsatellite markers. A part of this study was done at the experimental facility of the Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Watanabe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kosuge, K., Watanabe, N. & Kuboyama, T. Recombination around the P locus for long glume phenotype in experimental introgression lines of Triticum aestivumTriticum polonicum . Genet Resour Crop Evol 57, 611–618 (2010). https://doi.org/10.1007/s10722-009-9499-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-009-9499-y

Keywords

Navigation