Skip to main content
Log in

Observational tests of Galileon gravity with growth rate

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We compare observational data of growth rate with the prediction by Galileon theory. For the same value of the energy density parameter \(\varOmega _{m,0}\), the growth rate in Galileon models is enhanced compared with the \(\varLambda \)CDM case, due to the enhancement of Newton’s constant. The smaller \(\varOmega _{m,0}\) is, the more suppressed growth rate is. Hence the best fit value of \(\varOmega _{m,0}\) in the Galileon model is 0.16 from only the growth rate data, which is considerably smaller than such value obtained from observations of supernovae Ia, the cosmic microwave background and baryon acoustic oscillations. We also find the upper limit of the Brans–Dicke parameter to be \(\omega < -\)1000 (\(1\sigma \)), from the growth rate data. In this paper, specific galileon models are considered, not the entire class. More and better growth rate data are required to distinguish between dark energy and modified gravity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. For example, models [19, 20, 26] do no have this “Galilean” symmetry, as well as the model studied in this paper. But it is still possible to keep its desired properties. The equation of motion for the scalar field can remain of second order, which prevents the theory from having additional degrees of freedom. However, the single degree of freedom \(\phi \) can still be a ghost, or can still have a ghosty perturbations around some background. Nevertheless, we use the name in this paper because no other name is as good as “Galileon”.

References

  1. Riess, A.G., et al.: Astron. J. 116, 1009 (1998)

    Article  ADS  Google Scholar 

  2. Perlmutter, S., et al.: Astrophys. J. 517, 565 (1999)

    Article  ADS  Google Scholar 

  3. Komatsu, E., et al.: Astrophys. J. Suppl. 192, 18 (2011)

    Article  ADS  Google Scholar 

  4. Ratra, B., Peebles, P.J.E.: Phys. Rev. D 37, 3406 (1988)

    Article  ADS  Google Scholar 

  5. Caldwell, R.R.: Phys. Lett. B 545, 23 (2002)

    Article  ADS  Google Scholar 

  6. Komiya, Z., Kawabata, K., Hirano, K., Bunya, H., Yamamoto, N.: Astron. Astrophys. 449, 903 (2006)

    Article  ADS  Google Scholar 

  7. Komiya, Z., Kawabata, K., Hirano, K., Bunya, H., Yamamoto, N.: J. Korean Astron. Soc. 38, 157 (2005)

    Article  ADS  Google Scholar 

  8. De Felice, A., Tsujikawa, S.: Living Rev. Rel. 13, 3 (2010)

    Google Scholar 

  9. Hirano, K., Komiya, Z.: Phys. Rev. D 82, 103513 (2010)

    Article  ADS  Google Scholar 

  10. Hirano, K., Kawabata, K., Komiya, Z.: Astrophys. Space Sci. 315, 53 (2008)

    Article  ADS  Google Scholar 

  11. Hartnett, J.G., Hirano, K.: Astrophys. Space Sci. 318, 13 (2008)

    Article  ADS  Google Scholar 

  12. Dvali, G.R., Gabadadze, G., Porrati, M.: Phys. Lett. B 485, 208 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  13. Hirano, K., Komiya, Z.: Gen. Relativ. Gravit. 42, 2751 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  14. Hirano, K., Komiya, Z.: Int. J. Mod. Phys. D 20, 1 (2011)

    Article  ADS  Google Scholar 

  15. Koyama, K.: Class. Quantum Gravity 24, R231 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  16. Xia, J.Q.: Phys. Rev. D 79, 103527 (2009)

    Article  ADS  Google Scholar 

  17. Nicolis, A., Rattazzi, R., Trincherini, E.: Phys. Rev. D 79, 064036 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  18. Chow, N., Khoury, J.: Phys. Rev. D 80, 024037 (2009)

    Article  ADS  Google Scholar 

  19. Silva, F.P., Koyama, K.: Phys. Rev. D 80, 121301 (2009)

    Article  ADS  Google Scholar 

  20. Kobayashi, T., Tashiro, H., Suzuki, D.: Phys. Rev. D 81, 063513 (2010)

    Article  ADS  Google Scholar 

  21. Kobayashi, T.: Phys. Rev. D 81, 103533 (2010)

    Article  ADS  Google Scholar 

  22. De Felice, A., Tsujikawa, S.: J. Cosmol. Astropart. Phys. 1007, 024 (2010)

    Article  Google Scholar 

  23. Gannouji, R., Sami, M.: Phys. Rev. D 82, 024011 (2010)

    Article  ADS  Google Scholar 

  24. De Felice, A., Tsujikawa, S.: Phys. Rev. Lett. 105, 111301 (2010)

    Article  ADS  Google Scholar 

  25. De Felice, A., Tsujikawa, S.: Phys. Rev. D 84, 124029 (2011)

    Article  ADS  Google Scholar 

  26. Deffayet, C., Pujolas, O., Sawicki, I., Vikman, A.: J. Cosmol. Astropart. Phys. 1010, 026 (2010)

    Article  ADS  Google Scholar 

  27. Vainshtein, A.I.: Phys. Lett. B 39, 393 (1972)

    Article  ADS  Google Scholar 

  28. Deffayet, C., Esposito-Farese, G., Vikman, A.: Phys. Rev. D 79, 084003 (2009)

    Article  ADS  Google Scholar 

  29. Deffayet, C., Deser, S., Esposito-Farese, G.: Phys. Rev. D 80, 064015 (2009)

    Article  ADS  Google Scholar 

  30. Kobayashi, T., Yamaguchi, M., Yokoyama, J.: Phys. Rev. Lett. 105, 231302 (2010)

    Article  ADS  Google Scholar 

  31. Mizuno, S., Koyama, K.: Phys. Rev. D 82, 103518 (2010)

    Article  ADS  Google Scholar 

  32. Kamada, K., Kobayashi, T., Yamaguchi, M., Yokoyama, J.: Phys. Rev. D 83, 083515 (2011)

    Article  ADS  Google Scholar 

  33. Nesseris, S., De Felice, A., Tsujikawa, S.: Phys. Rev. D 82, 124054 (2010)

    Article  ADS  Google Scholar 

  34. De Felice, A., Mukohyama, S., Tsujikawa, S.: Phys. Rev. D 82, 023524 (2010)

    Article  ADS  Google Scholar 

  35. Kimura, R., Yamamoto, K.: J. Cosmol. Astropart. Phys. 1104, 025 (2011)

    Article  ADS  Google Scholar 

  36. De Felice, A., Kase, R., Tsujikawa, S.: Phys. Rev. D 83, 043515 (2011)

    Article  ADS  Google Scholar 

  37. Hawkins, E., et al.: Mon. Not. R. Astron. Soc. 346, 78 (2003)

    Article  ADS  Google Scholar 

  38. Verde, L., et al.: Mon. Not. R. Astron. Soc. 335, 432 (2002)

    Article  ADS  Google Scholar 

  39. Tegmark, M., et al.: Phys. Rev. D 74, 123507 (2006)

    Article  ADS  Google Scholar 

  40. Ross, N.P., et al.: Mon. Not. R. Astron. Soc. 381, 573 (2007)

    Article  ADS  Google Scholar 

  41. Guzzo, L., et al.: Nature 451, 541 (2008)

    Article  ADS  Google Scholar 

  42. da Angela, J., et al.: Mon. Not. Roy. Astron. Soc. 383, 565 (2008)

    Article  ADS  Google Scholar 

  43. McDonald, P., et al.: Astrophys. J. 635, 761 (2005)

    Article  ADS  Google Scholar 

  44. Akaike, H., Trans, I.E.E.E.: Auto. Control 19, 716 (1974)

    Article  Google Scholar 

  45. Schwarz, G.: Annals of Statistics 6, 461 (1978)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science [Grant No. 25400264 (KH)].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koichi Hirano.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hirano, K. Observational tests of Galileon gravity with growth rate. Gen Relativ Gravit 48, 138 (2016). https://doi.org/10.1007/s10714-016-2129-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-016-2129-z

Keywords

Navigation