Skip to main content
Log in

Weyl gauge-vector and complex dilaton scalar for conformal symmetry and its breaking

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

Instead of the scalar “dilaton” field that is usually adopted to construct conformally invariant Lagrangians for gravitation, we here propose a hybrid construction, involving both a complex dilaton scalar and a Weyl gauge-vector, in accord with Weyl’s original concept of a non-Riemannian conformal geometry with a transport law for length and time intervals, for which this gauge vector is required. Such a hybrid construction permits us to avoid the wrong sign of the dilaton kinetic term (the ghost problem) that afflicts the usual construction. The introduction of a Weyl gauge-vector and its interaction with the dilaton also has the collateral benefit of providing an explicit mechanism for spontaneous breaking of the conformal symmetry, whereby the dilaton and the Weyl gauge-vector acquire masses somewhat smaller than \(\textit{m}_\textit{P}\) by the Coleman–Weinberg mechanism. Conformal symmetry breaking is assumed to precede inflation, which occurs later by a separate GUT or electroweak symmetry breaking, as in inflationary models based on the Higgs boson.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The preservation of the dimension of the metric tensor requires a dimensional factor \(1/(\mathrm{mass})^{2}\) on the right side of this transformation equation, to compensate the dimension of \(\phi ^{2}\). This dimensional factor is of crucial importance in investigations of renormalizability. For the sake of simplicity, I here imitate Jackiw and Pi in omitting this factor.

  2. With the Lagrangian (4), additional conformally-invariant higher-order derivative terms, such as the term \(\alpha _{\textit{grav}} \sqrt{-g}(R_{\mu \nu } R^{\mu \nu }-R^{2}/3)\) often favored by theorists, merely add short-range Yukawa potentials to the usual macroscopic 1 / r Newtonian potential. If \(\alpha _{\textit{grav}} \) is of the order of magnitude of \({\sim }\)1, then the range of this Yukawa potential is about a Planck length and it produces no measurable macroscopic effects. However, the higher-order derivatives can lead to drastic modifications of the singularities found in general relativity.

  3. The masses are here expressed in terms of \(\Theta \), but they can be alternatively expressed in terms of \(\lambda \) because the condition for a minimum in the effective potential implies the relation \(\lambda =(33/128\pi ^{2})b^{4}\cosh ^{6}\Theta \) between the coupling constants [23].

  4. For conformal invariance, each of the Higgs scalar fields H associated with the breaking of GUT and electroweak symmetries requires the addition of an extra term \(-\sqrt{-g}{} \textit{HH}^{\dagger }R/6\) to the Lagrangian. This alters Eq. (7) and requires a small increase of \(\left\langle \chi \right\rangle \), which leads to small changes in the masses \(\textit{m}_{\textit{V}}\) and \(\textit{m}_{\textit{S}}\).

  5. Weyl did not include the adjustable coupling constant b in his law, and he used the symbol \(\ell \) for the length squared of a vector, whereas I prefer \(\ell ^{2}\).

References

  1. Deser, S.: Ann. Phys. 59, 248 (1970)

    Article  ADS  MathSciNet  Google Scholar 

  2. Englert, F., Gunzig, E., Truffin, C., Windey, P.: Phys. Lett. B 57, 73 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  3. Bekenstein, J.D., Meisels, A.: Phys. Rev. D 22, 1313 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  4. Mannheim, P.D., O’Brien, J.G.: Phys. Rev. Lett. 106, 121101 (2011)

    Article  ADS  Google Scholar 

  5. Mannheim, P.D.: Found. Phys. 42, 388 (2012). arXiv:1101.2186v2 [hep-th]

  6. Pervushin, V.N. et al.: arXiv:1209.4460v3 [hep-th] (2013)

  7. Kallosh, R.: Phys. Lett. B 55, 321 (1975)

    Article  ADS  Google Scholar 

  8. Kleinert, H.: Electron. J. Theor. Phys. 11, 1 (2014). www.ejtp.com/articles/ejtpv11i30p1.pdf

  9. Bars, I., Steinhardt, P., Turok, N.: Phys. Rev. D 89, 043515 (2014)

    Article  ADS  Google Scholar 

  10. Jizba, P., Kleinert, H., Scardigli, F.: arXiv:1410.8062v1 [hep-th] (2014)

  11. Bezrukov, F.L., Shaposhnikov, M.: Phys. Lett. B 659, 703 (2008)

    Article  ADS  Google Scholar 

  12. Planck Collaboration, Ade, P.A.R., et al.: arXiv:1303.5082v3 [astro-ph.CO] (2015)

  13. t’Hooft, G.: arXiv:1104.4543v1 [gr-qc] (2011)

  14. Bars, I., Chen, S.-H., Steinhardt, P.J., Turok, N.: Phys. Lett. B 715, 278 (2011)

    Article  ADS  Google Scholar 

  15. Bars, I., Chen, S.-H., Steinhardt, P.J., Turok, N.: Phys. Rev. D 86, 083542 (2012)

    Article  ADS  Google Scholar 

  16. Kallosh, R., Linde, A.: J. Cosmol. Astropart. Phys. 1307, 002 (2013). arXiv:1306.5220v2

    Article  ADS  Google Scholar 

  17. Costa, R., Nastase, H.: J. High Energy Phys. 6, 145 (2014). arXiv:1403.7157 [hep-th]

    Article  ADS  Google Scholar 

  18. Jackiw, D., Pi, S.-Y.: Phys. Rev. D. 91, 067501 (2015). arXiv:1407.8545

  19. Englert, F., Brout, R.: Phys. Rev. Lett. 13, 321 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  20. Higgs, P.W.: Phys. Rev. Lett. 13, 508 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  21. Ehlers, J., Pirani, F.A.E., Schild, A.: The geometry of free fall and light propagation. In: O’Raifeartaigh, L. (ed.) General Relativity, Papers in Honour of J. L. Synge. Clarendon Press, Oxford (1972)

    Google Scholar 

  22. Brans, C., Dicke, R.H.: Phys. Rev. 124, 925 (1961)

    Article  ADS  MathSciNet  Google Scholar 

  23. Coleman, S., Weinberg, E.: Phys. Rev. D 7, 1888 (1973)

    Article  ADS  Google Scholar 

  24. Weyl, H.: Sitzungsber. d. Preuss. Akad. d. Wissensch. 465 (1918)

  25. Weyl, H.: Raum, Zeit, Materie. Springer, Berlin (1919)

    Book  MATH  Google Scholar 

  26. Smolin, L.: Nucl. Phys. B 160, 253 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  27. Cheng, H.: Phys. Rev. Lett. 61, 2182 (1988)

    Article  ADS  Google Scholar 

  28. Nishino, H., Rajpoot, S.: Class. Quantum Gravity 28, 145014 (2011). arXiv:hep-th/0403039v1

    Article  ADS  MathSciNet  Google Scholar 

  29. Drechsler, W., Tann, H.: Found. Phys. 29(7), 1023 (1999)

    Article  MathSciNet  Google Scholar 

  30. Pauli, W.: Theory of Relativity. Pergamon Press, London (1958)

    MATH  Google Scholar 

  31. Ohanian, H.C.: arXiv:1502.00020 (2015)

  32. Jordan, P.: Z. Phys. 157, 112 (1959)

    Article  ADS  Google Scholar 

  33. Birrell, N.D., Davies, P.C.W.: Quantum Fields in Curved Space, Section 3.8. University Press, Cambridge (1982)

    Book  MATH  Google Scholar 

  34. Callan, C.G., Coleman, S., Jackiw, R.: Ann. Phys. 59, 42 (1970)

    Article  ADS  MathSciNet  Google Scholar 

  35. Hill, C.T.: Phys. Rev. D 89, 07003 (2014)

    Article  Google Scholar 

  36. Eddington, A.S.: The Mathematical Theory of Relativity. University Press, Cambridge (1963)

    Google Scholar 

  37. Dirac, P.A.M.: Proc. R. Soc. Lond. A 333, 403 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  38. Utiyama, R.: Prog. Theor. Phys. 50, 2080 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  39. Fulton, T., Rohrlich, F., Witten, L.: Rev. Mod. Phys. 34, 442 (1962)

    Article  ADS  MathSciNet  Google Scholar 

  40. Adler, R., Bazin, M., Schiffer, M.: Introduction to General Relativity. McGraw-Hill, New York (1975)

    MATH  Google Scholar 

  41. Kibble, T.W.B.: J. Math. Phys. 2, 212 (1961)

    Article  ADS  MathSciNet  Google Scholar 

  42. Haba, Z.: arXiv:hep-th/0205130v1 (2002)

  43. Mannheim, P.D., Kazanas, D.: Gen. Relativ. Gravit. 26(4), 337 (1994)

    Article  ADS  Google Scholar 

  44. Ohanian, H.C.: Problems with conformal gravity. In: Auping-Birch, J., Sandoval-Villabazo, A. (eds.) Proceedings of the International Conference on Two Cosmological Models (2010). Universidad Iberoamericana, Mexico (2012)

  45. Yoon, Y.: Phys. Rev. D 88, 027504 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

I am grateful to Hagen Kleinert, Philip Mannheim, and She-Sheng Xue for discussions of the difficulties in constructing standard gravity by symmetry breaking of a conformally-invariant theory, and I am grateful to two anonymous reviewers for bringing Refs. [18, 35] to my attention.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans C. Ohanian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ohanian, H.C. Weyl gauge-vector and complex dilaton scalar for conformal symmetry and its breaking. Gen Relativ Gravit 48, 25 (2016). https://doi.org/10.1007/s10714-016-2023-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-016-2023-8

Keywords

Navigation