Skip to main content
Log in

Hawking temperature and the emergent cosmic space

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The aim of this work is to model the evolution of cosmic space based on thermodynamical parameters. The universe is considered to have an apparent horizon radius with a Kodama–Hayward temperature assigned to it. The method is founded on the fact proposed by Padmanabhan (arXiv:1206.4916; Res Astro Astrophys 12:891 arXiv:1207.0505, 2012) that the subtraction of the surface and bulk degrees of freedom provides information on the emergence of cosmic space. The fact of the matter is that in this approach the Raychaudhuri equation could even be obtained by the consideration of only thermodynamical parameters. As such, standard general relativity is taken as the starting point, where by implementing the standard cosmological equations, we obtain a generalized evolutionary equation supporting the emergence of cosmic space. The method proposed in this work can provide a basis for other cosmological models to have an emergent perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. For simplicity, the natural units \(k_{{B}}=c=\hbar =1\) are used throughout this paper.

References

  1. Padmanabhan,T.: arXiv:1206.4916

  2. Padmanabhan, T.: Res. Astro. Astrophys. 12, 891 (2012). arXiv:1207.0505

  3. Sakharov, A.D.: Sov. Phys. Dokl. 12, 1040 (1968)

    ADS  Google Scholar 

  4. Sakharov, A.D.: Gen. Relativ. Gravit. 32, 365 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. Visser, M.: Mod. Phys. Lett. A 17, 977 (2002). arXiv:gr-qc/0204062

  6. Bardeen, J.M., Carter, B., Hawking, S.W.: Commun. Math. Phys. 31, 161 (1973)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. Bekenstein, J.D.: Phys. Rev. D 7, 2333 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  8. Bekenstein, J.D.: Phys. Rev. D 9, 3292 (1974)

    Article  ADS  Google Scholar 

  9. Hawking, S.W.: Nature 248, 30 (1974)

    Article  ADS  Google Scholar 

  10. Jacobson, T.: Phys. Rev. Lett. 75, 1260 (1995). arXiv:gr-qc/9504004

  11. Unruh, W.G.: Phys. Rev. D 14, 870 (1976)

    Article  ADS  Google Scholar 

  12. Verlinde, E.: J. High Energy Phys. 4, 029 (2011). arXiv:1001.0785

  13. Padmanabhan, T.: Mod. Phys. Lett. 25, 1129 (2010). arXiv:0912.3165

  14. Cai, R.G., Cao, L.M., Ohta, N.: Phys. Rev. D 81, 061501 (2010). arXiv:1001.3470

  15. Sheykhi, A.: Phys. Rev. D 87, 061501 (2013). arXiv:1304.3054

  16. Kolekar, S., Kothawala, D., Padmanabhan, T.: Phys. Rev. D 85, 064031 (2012). arXiv:1111.0973

  17. Cai, R.G.: J. High Energy Phys. 11, 016 (2012). arXiv:1207.0622

  18. Eune, M., Kim, W.: Phys. Rev. D 88, 067303 (2013). arXiv:1305.6688v2

  19. Ling, Y., Pan, W.J.: Phys. Rev. D 88, 043518 (2013). arXiv:1304.0220

  20. Chen, Y.X., Shao, K. N.: arXiv:1007.4367

  21. Cai, R.G., Kim, S.P.: J. High Energy Phys. 02, 050 (2005). arXiv:hep-th/0501055

  22. Faraoni, V.: Phys. Rev. D 84, 024003 (2011). arXiv:1106.4427

  23. Hayward, S.A.: Class. Quantum Gravity 15, 3147 (1998). arXiv:gr-qc/9710089

  24. Hayward, S.A., Di Criscienzo, R., Vanzo, L., Nadalini, M., Zerbini, S.: Class. Quantum Gravity 26, 062001 (2009). arXiv:0806.0014

  25. Nielsen, A.B., Yoon, J.H.: Class. Quantum. Gravity 25, 085010 (2008). arXiv:0711.1445

  26. Cai, R.G., Cao, L.M., Hu, Y.P.: Class. Quantum Gravity 26, 155018 (2009). arXiv:0809.1554

  27. Wei, Y.H.: Phys. Lett. B 689, 129 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  28. Sharif, M., Zubai, M.: JCAP 03, 028 (2012). arXiv:1204.0848v2

  29. Karami, K., Khaledian, M.S., Abdollahi, N.: Europhys. Lett. 98, 30010 (2012). arXiv:1201.4817

  30. Abdolmaleki, A., Najafi, T., Karami, K.: Phys. Rev. D 89, 104041 (2014). arXiv:1401.7549

  31. Akbar, M.: Chin. Phys. Lett. 25, 4199 (2008). arXiv:0808.0169

  32. Padmanabhan, T.: Class. Quantum Gravity 21, 4485 (2004). arXiv:gr-qc/0308070

  33. Hu, Y.P.: Phys. Lett. B 701, 269 (2011). arXiv:1007.4044v3

  34. Bak, D., Rey, S.J.: Class. Quantum Gravity 17, L83 (2000). arXiv:hep-th/9902173

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Jalalzadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashemi, M., Jalalzadeh, S. & Vasheghani Farahani, S. Hawking temperature and the emergent cosmic space. Gen Relativ Gravit 47, 53 (2015). https://doi.org/10.1007/s10714-015-1893-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-015-1893-5

Keywords

Navigation