Skip to main content
Log in

Electrostatics in a simple wormhole revisited

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The electrostatic potential generated by a point charge at rest in a simple static, spherically symmetric wormhole is given in the form of series of multipoles and in closed form. The general potential which is physically acceptable depends on a constant due to the fact that the monopole solution is arbitrary. When the wormhole has \(Z_2\)-symmetry, the potential is completely determined. The calculation of the electrostatic self-energy and of the self-force is performed in all cases considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Khusnutdinov, N.R., Bakhmatov, I.V.: Phys. Rev. D 76, 124015 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  2. Khusnutdinov, N.R., Bakhmatov, I.V.: Grav. Cosm. 14, 100 (2008)

    ADS  MATH  Google Scholar 

  3. Krasnikov, S.: Class. Quantum Gravity 25, 245018 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  4. Khusnutdinov, N.R., Popov, A.A., Lipatova, L.N.: Class. Quantum Gravity 27, 215012 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  5. Beskin, V.S., Kardashev, N.S., Novikov, I.D., Shatskii, A.A.: Astron. Rep. 55, 753 (2011)

    Article  ADS  Google Scholar 

  6. Bezerra, V.B., Khusnutdinov, N.R.: Phys. Rev. D 79, 064012 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  7. Popov, A.A.: Phys. Lett. B 693, 180 (2010)

    Article  ADS  Google Scholar 

  8. Morris, M.S., Thorne, K.S.: Am. J. Phys. 56, 395 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  9. Ellis, H.G.: J. Math. Phys. 14, 104 (1973)

    Article  ADS  Google Scholar 

  10. Bronikov, K.A.: Acta Phys. Polon. B 4, 251 (1973)

    MathSciNet  Google Scholar 

  11. Visser, M.: Lorentzian Wormholes: From Einstein to Hawking. AIP Press, New York (1996)

    Google Scholar 

  12. Linet, B.: arXiv:0712.0539 (2007)

  13. Olver, F.W.: Introduction to Asymptotics and Special Functions. Academic Press, New York (1974)

    MATH  Google Scholar 

  14. Linet, B.: J. Phys. A 9, 1081 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  15. Damour, T., Solodukhin, S.N.: Phys. Rev. D 76, 024016 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  16. Casals, M., Poisson, E., Vega, I.: Phys. Rev. D 86, 064033 (2012)

    Article  ADS  Google Scholar 

  17. Linet, B.: Gen. Relativ. Gravit. 37, 2145 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Boisseau.

Appendices

Appendix A: The Green function of the radial differential equations

Let the self-adjoint differential equation with a source term

$$\begin{aligned} \frac{d}{dx}\left( p(x)\frac{dA}{dx}\right) +q(x)A=c\delta (x-a) , \end{aligned}$$
(60)

and the corresponding homogeneous equation

$$\begin{aligned} \frac{d}{dx}\left( p(x)\frac{dA}{dx}\right) +q(x)A=0 , \end{aligned}$$
(61)

where the functions \(p,\,dp/dx\) and \(q\) are continuous and moreover \(p\) is strictly positive on \((-\infty , \infty )\).

In the context of our present work, we assume that the homogeneous equation (61), admits two regular solutions \(A^{(i)}\) and \(A^{(e)}\), linearly independent, having respectively the following boundary conditions:

$$\begin{aligned} \lim _{x\rightarrow -\infty } A^{(i)}(x) =0 , \quad \lim _{x\rightarrow \infty }A^{(e)}(x) =0. \end{aligned}$$
(62)

The solutions \(A^{(i)}\) and \(A^{(e)}\) are fixed up to a multiplicative constant. The nonvanishing Wronskian \(\mathcal{W}(A^{(i)},A^{(e)})\) can be easily expressed in the form

$$\begin{aligned} \mathcal{W}( A^{(i)},A^{(e)}) (x)=\frac{k}{p(x)} , \end{aligned}$$
(63)

where \(k\) is a constant.

The Green function \(A(x,a)\) of the differential equation (60), which verifies the boundary conditions

$$\begin{aligned} \lim _{x\rightarrow -\infty } A(x,a)=0 , \quad \lim _{x\rightarrow \infty } A(x,a)=0 , \end{aligned}$$
(64)

is defined by the other following properties:

  1. a.

    \(A(x,a)\) satisfies the homogeneous equation (61) except at \(x=a\).

  2. b.

    \(A(x,a)\) is continuous at \(x=a\).

  3. c.

    The derivative of \(A(x,a)\) with respect to \(x\) has a jump discontinuity of magnitude \(c/p(a)\) at \(x=a\).

These conditions ensure that \(A(x,a)\) satisfies the differential equation (60) in the sense of distributions with the boundary conditions (64).

It is now possible to determine this Green function \(A(x,a)\) with the help of the functions \(A^{(i)}\) and \(A^{(e)}\). Consider the function \(H\) defined by

$$\begin{aligned} H(x,a)=\frac{c}{k}\left\{ \begin{array}{ll} A^{(i)}(x)A^{(e)}(a) \quad \mathrm{if} \quad x\le a , \\ A^{(i)}(a)A^{(e)}(x) \quad \mathrm{if} \quad x\ge a \end{array} \right.. \end{aligned}$$
(65)

It is obvious that \(H(x,a)\) verifies all the properties of a Green function. For simplicity, it is possible to take \(k=c\) by a judicious choice of functions \(A^{(i)}\) and \(A^{(e)}\) defined up to a multiplicative constant. Thus, the Green function of the differential equation (60) has expression (65) with \(k=c\) that one can rewrite in the form

$$\begin{aligned} A(x,a)=\theta (a-x)A^{(i)}(x)A^{(e)}(a)+\theta (x-a)A^{(i)}(a)A^{(e)}(x) , \end{aligned}$$
(66)

where \(\theta \) is the Heaviside step function.

Appendix B: Explicit electrostatic potential in higher dimensions

Metric (1) can be easily generalised to describe the spacetime representing a wormhole in \(n+1\) dimensions, \(n\ge 3\). We take

$$\begin{aligned} ds^2=-dt^2+dl^2+( l^2+w^2) d\Omega _{n-1}^{2} , \end{aligned}$$
(67)

with \(-\infty <l<\infty \), and where \(d\Omega _{n-1}^{2}\) is the metric of the sphere \(S^{n-1}\) described in the coordinates \((\vartheta _1,\dots ,\vartheta _{n-2},\varphi )\). The change of radial coordinates (33) expresses metric (67) in isotropic coordinates

$$\begin{aligned} ds^2=-dt^2+\left( 1+\frac{w^2}{4r^2}\right)^2 \left( dr^2+r^2d\Omega _{n-1}^{2}\right) \end{aligned}$$
(68)

with \(r>0\). We set the associated Cartesian coordinates \((x^i),\,i=1,\dots ,n\). Metric (68) can be written thereby

$$\begin{aligned} ds^2=-dt^2+\left( 1+\frac{w^2}{4r^2}\right)^2\left( ( dx^1)^2+\cdots +( dx^n)^2\right) , \end{aligned}$$
(69)

where \(r=\sqrt{( x^1)^2+\cdots +( x^n)^2}\).

We consider the usual Maxwell equations in a spacetime of \(n+1\) dimensions. The charge density \(\rho \) for a point charge \(e\) located at \(x^i=x_{0}^{i}\) has the expression

$$\begin{aligned} \rho (x^i)=\frac{e}{\sqrt{-g}}\delta ^{(n)}( x^i-x_{0}^{i}) , \end{aligned}$$
(70)

where \(g\) is the determinant of metric (69) given by

$$\begin{aligned} \sqrt{-g}=\left(1+\frac{w^2}{4r^2}\right)^n. \end{aligned}$$
(71)

The electrostatic equation in metric (69) takes the form

$$\begin{aligned} \triangle V+h(r)\frac{x^i}{r}\partial _iV=-2(n-2)\frac{\pi ^{n/2}}{\Gamma (n/2)}\frac{e}{\displaystyle \left( 1+\frac{w^2}{4r^2}\right)^{n-2}} \delta ^{(n)}(x^i-x_{0}^{i}) , \end{aligned}$$
(72)

where \(\triangle \) is the usual Laplacian operator, and in which the function \(h\) has the expression

$$\begin{aligned} h(r)=\frac{1}{\displaystyle \left( 1+\frac{w^2}{4r^2}\right)^{n-2}}\frac{d}{dr}\left( 1+\frac{w^2}{4r^2}\right)^{n-2} =-\frac{(n-2)w^2}{2r(r^2+w^2/4)}. \end{aligned}$$
(73)

In a previous work [17] , it was shown that exact solutions to the electrostatic equation (72) exist in the form

$$\begin{aligned} V(x)=g(r)g(r_0)F\left( \frac{\Gamma (x,x_0)}{k(r)k(r_0)}\right) , \end{aligned}$$
(74)

with

$$\begin{aligned} \Gamma (x,x_0)=(x^1-x_{0}^{1})^2+\cdots +(x^n-x_{0}^{n})^2, \end{aligned}$$
(75)

if the function \(h\) satisfies a certain differential equation. It may be only the type II with \(a=w/2\) in the classification of this work. Consequently, the function \(h\) must satisfy the differential equation

$$\begin{aligned} \frac{d}{dr}h+\frac{1}{2}h^2+\frac{n-1}{r}h-\frac{2[ -n(n-2)w^2/4-Ab^2]}{(r^2+w^2/4)^2}=0 \end{aligned}$$
(76)

in which the two constants \(b\) et \(A\) are to be fixed.

From (73), we calculate

$$\begin{aligned} \frac{d}{dr}h+\frac{1}{2}h^2+\frac{n-1}{r}h=-\frac{(n^2-6n+8)w ^2}{2(r^2+w^2/4)^2}. \end{aligned}$$
(77)

By comparing (76) and (77), we find the value of the constants: \(b=w/2\) and \(A=-4n+8\).

We are thus in the case where the electrostatic equation (72) has solutions in the form (74). According to the results of the work [17], the functions \(k\) and \(g\) are expressed as

$$\begin{aligned} k(r)=\frac{r^2+w^2/4}{w/2} , \quad g(r)=\frac{r^{n-2}}{(r^2+w^2/4)^{n-2}} , \end{aligned}$$
(78)

and the function \(F\) is determined by the differential equation

$$\begin{aligned} 4(-s^2+s)F^{\prime \prime }+(-4ns+n)F^{\prime }+(-4n+8)F=0. \end{aligned}$$
(79)

As variable \(s\) we have set

$$\begin{aligned} s=\frac{\Gamma (x,x_0)}{k(r)k(r_0)}. \end{aligned}$$
(80)

The value \(s=0\) corresponds to the position of the point charge. We emphasize that

$$\begin{aligned} 0\le s\le 1. \end{aligned}$$
(81)

This comes from that fact that we can always take the particular case where the point charge is located at \(\vartheta _1=0\) without lost of generality, due to the spherical symmetry. Inequality (81) is then written

$$\begin{aligned} w^2(r^2-2rr_0\cos \vartheta _1 +r_{0}^{2})\le 4(r^2+w^2/4)(r_{0}^{2}+w^2/4) , \end{aligned}$$

which is equivalent to the recognized inequality

$$\begin{aligned} 4r^2r_{0}^{2}+2rr_0w^2\cos \vartheta _1+w^4/4 \ge 0. \end{aligned}$$

We firstly find a particular solution to (79)

$$\begin{aligned} F_e(s)=\frac{1}{[s(1-s)]^{n/2-1}}. \end{aligned}$$
(82)

A classical method shows that the general solution to (79) is given by

$$\begin{aligned} F(s)=\frac{1}{[s(1-s)]^{n/2-1}}\left\{ f_1+f_2\int \limits _{0}^{s}[u(1-u)]^{n/2-2}du \right\} \end{aligned}$$
(83)

where \(f_1\) and \(f_2\) are two arbitrary constants. The integral in (83) can be explicitly performed for all values of \(n\).

We will choose the constants \(f_1\) and \(f_2\) first of all so that solution (74) is regular everywhere, except at \(x=x_0\). This occurs if the function \(F\), given by (83), has only a singularity at \(s=0\). Now we have

$$\begin{aligned} \int \limits _{0}^{s}[u(1-u)]^{n/2-2}du -\int \limits _{0}^{1}[u(1-u)]^{n/2-2}du \sim (1-s)^{n/2-1} \quad \mathrm{as}\quad s\rightarrow 1 , \end{aligned}$$

therefore we take the relation

$$\begin{aligned} f_1+f_2\int \limits _{0}^{1}[u(1-u)]^{n/2-2}du=0. \end{aligned}$$
(84)

The important point is that solution (74) satisfies the electrostatic equation (72) in the sense of distributions. By noticing from (83) that

$$\begin{aligned} F(s) \sim \frac{f_1}{s^{n/2-1}} \quad \mathrm{as} \quad s \rightarrow 0 , \end{aligned}$$

we can deduce the most divergent part of \(V\) as \(x\rightarrow x_0\)

$$\begin{aligned} V(x) \sim f_1\left( \frac{2}{w}\right)^{n-2}\frac{1}{(1+w^2/4r_{0}^{2})^{n/2-1}(1+w^2/4r^{2})^{n/2-1}}\frac{1}{[\Gamma (x,x_0)]^{n/2-1}}.\qquad \quad \end{aligned}$$
(85)

By considering the source term of Eq. (72), we take

$$\begin{aligned} f_1=e\left( \frac{w}{2}\right)^{n-2} , \end{aligned}$$
(86)

since

$$\begin{aligned} \triangle \frac{1}{[\Gamma (x,x_0)]^{n/2-1}} =-2(n-2)\frac{\pi ^{n/2}}{\Gamma (n/2)}\delta ^{(n)}(x,x_0). \end{aligned}$$

So ,we obtain

$$\begin{aligned} F(s)\!=\!e\left(\! \frac{w}{2}\!\right)^{n-2}\frac{1}{[s(1-s)]^{n/2-1}}\left\{ 1-\frac{1}{\int _{0}^{1}[u(1-u)]^{n/2-2}du}\int \limits _{0}^{s}[u(1-u)]^{n/2-2}du \right\} .\qquad \end{aligned}$$
(87)

Now with (78), (80) and (87), we are in position to write from (74) the potential \(V(x)\) generated by a point charge at \(x=x_0\).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boisseau, B., Linet, B. Electrostatics in a simple wormhole revisited. Gen Relativ Gravit 45, 845–864 (2013). https://doi.org/10.1007/s10714-013-1504-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-013-1504-2

Keywords

Navigation