Skip to main content
Log in

Entropy correction to stationary black hole via fermions tunneling beyond semiclassical approximation

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

Recently, fermions tunneling beyond semiclassical approximation from an uncharged static black hole was investigated by Majhi, which was based on the work of Banerjee and Majhi, it was found that the black hole entropy correction can be produced as the quantum effect of a particle is taken into account. In this paper, we further extend this idea to the stationary Kerr black hole to discuss its entropy correction. To get the corrections correctly, the proportionality parameters of quantum corrections of action I i to the semiclassical action I 0 in this case are regarded as the inverse of the product of Planck Length and Planck Mass. The result shows that entropy corrections to the stationary black hole also include the logarithmic term and inverse area term in Bekenstein–Hawking entropy beyond semiclassical approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bardeen J.M., Carter B., Hawking S.W.: The four laws of black hole dynamics. Commun. Math. Phys. 34, 161 (1973). doi:10.1007/BF01645742

    Article  MathSciNet  ADS  Google Scholar 

  2. Bekenstein J.D.: Black hole and the second law. Lett. Nuovo Cimento 4, 737 (1972). doi:10.1007/BF02757029

    Article  ADS  Google Scholar 

  3. Hawking S.W.: Particle creation by black holes. Commun. Math. Phys. 43, 199 (1975). doi:10.1007/BF02345020

    Article  MathSciNet  ADS  Google Scholar 

  4. Srinivasan K., Padmanabhan T.: Particle production and complex path analysis. Phys. Rev. D Part. Fields 60, 024007 (1999). doi:10.1103/PhysRevD.60.024007

    MathSciNet  ADS  Google Scholar 

  5. Parikh M.K., Wiclzek F.: Hawking radiation as tunneling. Phys. Rev. Lett. 85, 5024 (2000). doi:10.1103/PhysRevLett.85.5042

    Article  ADS  Google Scholar 

  6. Kerner R., Mann R.B.: Fermions tunneling from black holes. Class. Quantum Gravity 25, 095014 (2008). doi:10.1088/0264-9381/25/9/095014

    Article  MathSciNet  ADS  Google Scholar 

  7. Banerjee, R., Majhi, B.R.: Hawking black body spectrum from tunneling mechanism. arXiv:0903.0250

  8. Banerjee, R., Majhi, B.R.: Quantum Tunn. Trace Anoma. arXiv:0808.3688

  9. Majhi, B.R., Samanta, S.: Hawking radiation due to photon and graviton tunneling. arXiv:0901.2258

  10. Banerjee, R., Majhi, B.R.: Connecting anomaly and tunneling methods for Hawking effect through chirality. arXiv:0812.0497

  11. Banerjee R., Majhi B.R.: Quantum tunneling and back reaction. Phys. Lett. B 662, 62 (2008). doi:10.1016/j.physletb.2008.02.044

    Article  MathSciNet  ADS  Google Scholar 

  12. Banerjee R., Majhi B.R., Samanta S.: Noncommutative black hole thermodynamics. Phys. Rev. D Part. Fields Gravit. Cosmol. 77, 124035 (2008). doi:10.1103/PhysRevD.77.124035

    MathSciNet  ADS  Google Scholar 

  13. Parikh M.K.: A secret tunnel through the horizon. Int. J. Mod. Phys. D 13, 2351 (2004). doi:10.1142/S0218271804006498

    Article  MathSciNet  ADS  Google Scholar 

  14. Zhang J.Y., Zhao Z.: New coordinates for Kerr-Newman black hole radiation. Phys. Lett. B 618, 14 (2005). doi:10.1016/j.physletb.2005.05.024

    Article  MathSciNet  ADS  Google Scholar 

  15. Zhang J.Y., Zhao Z.: New coordinates for Kerr-Newman black hole radiation. Mod. Phys. Lett. A 20, 1673 (2005). doi:10.1142/S0217732305017019

    Article  ADS  MATH  Google Scholar 

  16. Zhang J.Y., Zhao Z.: Massive particles’ black hole tunneling and de Sitter tunneling. Nucl. Phys. B 725, 173 (2005). doi:10.1016/j.nuclphysb.2005.07.024

    Article  ADS  MATH  Google Scholar 

  17. Zhang J.Y., Zhaom Z.: Hawking radiation of charged particle via tunneling from the Reissner- Nordström black hole. J. High Energy Phys. 10, 055 (2005)

    Article  ADS  Google Scholar 

  18. Liu W.B.: New Coordinates for BTZ black hole and Hawking radiation via tunneling. Phys. Lett. B 634, 541 (2006). doi:10.1016/j.physletb.2006.01.028

    Article  MathSciNet  ADS  Google Scholar 

  19. Li G., Liu W.B.: The quantum horizon of Garfinkle-Horowitz- Strominger dilatonic black hole. Gen. Relativ. Gravit. 38, 963 (2006). doi:10.1007/s10714-006-0276-3

    Article  ADS  MATH  Google Scholar 

  20. Yang S.Z.: KerrNewman Kasuya black hole tunneling radiation. Chin. Phys. Lett. 22, 492 (2005)

    Google Scholar 

  21. Chen D.Y., Jiang Q.Q., Yang S.Z., Zu X.T.: Fermions tunneling from the charged dilatonic black holes. Class. Quantum Gravity 25, 205022 (2008). doi:10.1088/0264-9381/25/20/205022

    Article  ADS  Google Scholar 

  22. Yang S.Z., Jiang Q.Q., Li H.L.: Quantum tunneling radiation of Einstein-Maxwell-Axion black hole. Chin. Phys. 14, 2411 (2005). doi:10.1088/1009-1963/14/11/016

    Article  ADS  Google Scholar 

  23. Jiang Q.Q., Wu S.Q., Cai X.: Hawking radiation as tunneling from the Kerr and Kerr-Newman black holes. Phys. Rev. D Part. Fields Gravit. Cosmol. 73, 064003 (2006). doi:10.1103/PhysRevD.73.064003

    MathSciNet  Google Scholar 

  24. Wu S.Q., Jiang Q.Q.: Remarks on Hawking radiation as tunneling from the BTZ black holes. JHEP 0603, 079 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  25. Zeng X.X., Yang S.Z.: Fermions tunneling from Reissner–Nordström black hole. Gen. Relativ. Gravit. 40, 2107 (2008). doi:10.1007/s10714-008-0618-4

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Zeng X.X., Yang S.Z., Chen D.Y.: Hawking radiation from gravity’s rainbow via gravitational anomaly. Chin. Phys. 17, 1674 (2008)

    Google Scholar 

  27. Banerjee R., Majhi B.R.: Quantum tunneling beyond semiclassical approximation. JHEP 06, 095 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  28. Zhang J.Y.: Black hole quantum tunnelling and black hole entropy correction. Phys. Lett. B 668, 353 (2008). doi:10.1016/j.physletb.2008.09.005

    Article  MathSciNet  ADS  Google Scholar 

  29. Majhi B.R.: Fermion tunneling beyond semiclassical approximation. Phys. Rev. D Part. Fields Gravit. Cosmol. 79, 044005 (2009). doi:10.1103/PhysRevD.79.044005

    ADS  Google Scholar 

  30. Modak S.K.: Corrected entropy of BTZ black hole in tunneling approach. Phys. Lett. B 671, 167 (2009). doi:10.1016/j.physletb.2008.11.043

    Article  MathSciNet  ADS  Google Scholar 

  31. Banerjee, R., Majhi, B.R., Roy, D.: Corrections to Unruh effect in tunneling formalism and mapping with Hawking effect. arXiv:0901.0466

  32. Kerr R.P.: Gravitational field of a spinning mass as an example of algebraically special metrics. Phys. Rev. Lett. 11, 237 (1963). doi:10.1103/PhysRevLett.11.237

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. Chen D.Y., Jiang Q.Q., Zu X.T.: Hawking radiation of Dirac particles via tunneling from rotating black holes in de Sitter spaces. Phys Lett. B. 665, 106 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  34. Zeng X.X., Li, L.: Entropy correction of charged black hole via fermions tunneling beyond semi- classical approximation. Sci. China-Phys. Mech. Astron. 53, (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Quan Yuan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuan, YQ., Zeng, XX., Zhou, ZJ. et al. Entropy correction to stationary black hole via fermions tunneling beyond semiclassical approximation. Gen Relativ Gravit 41, 2771–2780 (2009). https://doi.org/10.1007/s10714-009-0806-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-009-0806-x

Keywords

Navigation