Skip to main content
Log in

An analytic perturbation approach for classical spinning particle dynamics

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

A perturbation method to analytically describe the dynamics of a classical spinning particle, based on the Mathisson–Papapetrou–Dixon (MPD) equations of motion, is presented. By a power series expansion with respect to the particle’s spin magnitude, it is shown how to obtain in general form an analytic representation of the particle’s kinematic and dynamical degrees of freedom that is formally applicable to infinite order in the expansion. Within this formalism, it is possible to identify a classical analogue of radiative corrections to the particle’s mass and spin due to spin–gravity interaction. The robustness of this approach is demonstrated by showing how to explicitly compute the first-order momentum and spin tensor components for arbitrary particle motion in a general space–time background. Potentially interesting applications based on this perturbation approach are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. http://lisa.jpl.nasa.gov

  2. Mathisson M. (1937). Acta Phys Pol. 6: 167

    Google Scholar 

  3. Papapetrou A. (1951). Proc R. Soc. London 209: 248

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Tulczyjew W. (1959). Acta Phys. Pol. 18: 393

    MathSciNet  MATH  Google Scholar 

  5. Dixon W.G. (1964). Nuovo Cim. 34: 317

    Article  MathSciNet  MATH  Google Scholar 

  6. Madore J. (1969). Ann. Inst. Henri Poincaré 11: 221

    MathSciNet  Google Scholar 

  7. Dixon W.G. (1974). Philos. Trans. R. Soc. London, Ser. A 277: 59

    Article  ADS  MathSciNet  Google Scholar 

  8. Dixon W.G. (1979). Isolated Gravitating Systems in General Relativity, vol. 156. North-Holland, Amsterdam

    Google Scholar 

  9. Ehlers J. and Rudolph E. (1977). Gen. Rel. Grav. 8: 197

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Bailey I. and Israel W. (1980). Ann. Phys. 130: 188

    Article  ADS  MathSciNet  Google Scholar 

  11. Noonan T.W. (1985). Astrophys. J. 291: 422

    Article  ADS  MathSciNet  Google Scholar 

  12. Mashhoon B. (1971). J. Math. Phys. 12: 1075

    Article  ADS  Google Scholar 

  13. Wald R. (1972). Phys. Rev. D 6: 406

    Article  ADS  Google Scholar 

  14. Tod K.P., de Felice F. and Calvani M. (1976). Nuovo Cim. B 34: 365

    Article  ADS  Google Scholar 

  15. Semerák O. (1999). Mon. Not. R. Astron. Soc. 308: 863

    Article  ADS  Google Scholar 

  16. Mohseni M., Tucker R.W. and Wang C. (2001). Class. Quant. Grav. 18: 3007

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Kessari S., Singh D., Tucker R.W. and Wang C. (2002). Class. Quant. Grav. 19: 4943

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Mino Y., Shibata M. and Tanaka T. (1996). Phys. Rev. D 53: 622

    Article  ADS  MathSciNet  Google Scholar 

  19. Tanaka T., Mino Y., Sasaki M. and Shibata M. (1996). Phys. Rev. D 54: 3762

    Article  ADS  MathSciNet  Google Scholar 

  20. Suzuki S. and Maeda K.I. (1998). Phys. Rev. D 58: 023005

    Article  ADS  MathSciNet  Google Scholar 

  21. Suzuki S. and Maeda K.I. (2000). Phys. Rev. D 61: 024005

    Article  ADS  Google Scholar 

  22. Hartl M.D. (2003). Phys. Rev. D 67: 024005

    Article  ADS  MathSciNet  Google Scholar 

  23. Hartl M.D. (2003). Phys. Rev. D 67: 104023

    Article  ADS  MathSciNet  Google Scholar 

  24. Singh D. (2005). Phys. Rev. D 72: 084033

    Article  ADS  MathSciNet  Google Scholar 

  25. Chicone C., Mashhoon B. and Punsly B. (2005). Phys. Lett. A 343: 1

    Article  ADS  MATH  Google Scholar 

  26. Mashhoon B. and Singh D. (2006). Phys. Rev. D 74: 124006

    Article  ADS  Google Scholar 

  27. Møller, C.: Commun. Inst. Dublin Adv. Stud., Ser A, p. 5 (1949)

  28. Nagle R.K. and Saff E.B. (1989). Fundamentals of Differential Equations, 2nd edn. Benjamin/Cummings, Redwood City, pp 52–53

    MATH  Google Scholar 

  29. Singh, D.: work in progress.

  30. Singh, D.: work in progress.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinesh Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, D. An analytic perturbation approach for classical spinning particle dynamics. Gen Relativ Gravit 40, 1179–1192 (2008). https://doi.org/10.1007/s10714-007-0597-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-007-0597-x

Keywords

Navigation