Skip to main content
Log in

Maximal extension of conformally flat globally hyperbolic space–times

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

The notion of maximal extension of a globally hyperbolic space–time arises from the notion of maximal solutions of the Cauchy problem associated to the Einstein’s equations of general relativity. Choquet-Bruhat and Geroch proved (Commun Math Phys 14:329–335, 1969) that if the Cauchy problem has a local solution, this solution has a unique maximal extension. Since the causal structure of a space–time is invariant under conformal changes of metrics we may generalize this notion of maximality to the conformal setting. In this article we focus on conformally flat space–times of dimension greater or equal than 3. In this case, by a Lorentzian version of Liouville’s theorem, these space–times are locally modeled on the Einstein space–time. In the first part of the article we use this fact to prove the existence and uniqueness of the maximum extension for globally hyperbolic conformally flat space–times. In the second part we give a causal characterization of globally hyperbolic conformally flat maximal space–times whose developing map is a global diffeomorphism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Our convention is to consider the zero vector as a spacelike vector. In particular, a causal or lightlike vector is non zero.

  2. In fact, as explained in [21], the definition of limit curve has been fitted in order to have this convergence property for globally hyperbolic space–times.

  3. The set \(A=\{x\in \mathbb {R}^{1,n} \ :\ \Vert x\Vert _{1,n}=-1\}\) is a closed achronal edgeless subset of \(\mathbb {R}^{1,n}\). But it is not a Cauchy hypersurface, because no lightlike straight lines going through the origin intersect \(A\).

  4. For intellectual satisfaction we should also mention that this condition is also necessary for strongly causal space–times. More precisely: in Hawking et al. [15] have shown that if \(g\) and \(g'\) define the same causal structure over \(M\) and if this structure is strongly causal, then \(g\) and \(g'\) are conformally equivalent. The hard part of their proof is to show that every homeomorphism which preserves the causal structure of a strongly causal space–time is differentiable. Starting from that it is easy to show that the identity is a conformal map.

References

  1. Barbot, T.: Globally hyperbolic flat space–times. J. Geom. Phys. 53(2), 123–165 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  2. Barbot, T.: Domaines globalement hyperboliques de l’espace de Minkowski et de l’espace anti-de Sitter, dans le livre Algèbre, dynamique et analyse pour la géométrie : aspects récents, Proceedings des Écoles de Géométrie et Systèmes dynamiques, Algérie, 2004–2007, pp. 101–138, Ellipse (2010)

  3. Barbot, T., Mérigot, Q.: Anosov AdS representations are quasi-Fuchsian. Groups Geom. Dyn. 6(3), 441–483 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  4. Beem, J.K., Ehrlich, P.E., Easley, K.L.: Global lorentzian geometry. In: Monographs and Textbooks in Pure and Applied Mathematics, vol. 202, 2nd edn. Marcel Dekker Inc., New York (1996)

  5. Bernal, A.N., Sánchez, M.: Globally hyperbolic spacetimes can be defined as ‘causal’ instead of ‘strongly causal’. Class. Quantum Gravity 24(3), 745 (2007)

  6. Bonsante, F.: Flat spacetimes with compact hyperbolic Cauchy surfaces. J. Differ. Geom. 69, 441–521 (2005)

    MATH  MathSciNet  Google Scholar 

  7. Cahen, M., Kerbrat, Y.: Transformations conformes des espaces symétriques pseudo-riemanniens. Ann. Math. Pura Appl. (4) 132, 275–289 (1983) (1982)

  8. Choquet-Brouhat, Y.: Théorème d’existence pour certaines systèmes d’équations aux dérivées partielles non linéaires. Acta Math. 88, 141–225 (1952)

    Article  MathSciNet  Google Scholar 

  9. Choquet-Bruhat, Y., Geroch, R.: Global aspects of the Cauchy problem in general relativity. Commun. Math. Phys. 14, 329–335 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  10. Frances, C.: Géométrie et Dynamique Lorentziennes Conforme. Ph.D. thesis, Ecole normale supérieure de Lyon (2002)

  11. Frances, C.: Sur les variétés Lorentziennes dont le groupe conforme est essentiel. Math. Ann. 332(1), 103–119 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  12. Geroch, R.: Spinor structure of space–times in general relativity II. J. Math. Phys. 83, 342–348 (1970)

    MathSciNet  Google Scholar 

  13. Goldman, W.M.: Geometric structures on manifolds and varieties of representations. In: Geometry of Group Representations (Boulder, CO, 1987), Contemp. Math., vol. 74, pp. 169–198. American Mathematical Society, Providence, RI (1988)

  14. Hawking, S.W., Ellis, G.F.R.: The Large Scale Structure of Space–Time. Cambridge University Press, London (1973). Cambridge Monographs on Mathematical Physics, No. 1

  15. Hawking, S.W., King, A.R., McCarthy, P.J.: A new topology for curved space–time which incorporates the causal, differential, and conformal structures. J. Math. Phys. 17(2), 174–181 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kobayashi, S.: Transformation Groups in Differential Geometry. Classics in Mathematics. Springer, Berlin (1995). Reprint of the 1972 edition

  17. Matsumoto, S.: Foundations of flat conformal structure. In: Aspects of Low-Dimensional Manifolds, vol. 20, pp. 167–261. Adv. Stud. Pure Math., Kinokuniya, Tokyo (1992)

  18. Mess, G.: Lorentz spacetimes of constant curvature. Geom. Dedic. 126, 3–45 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  19. Minguzzi, E., Sánchez, M.: The causal hierarchy of spacetimes. In: Recent Developments in Pseudo-Riemannian Geometry, ESI Lect. Math. Phys., pp. 299–358. Eur. Math. Soc., Zürich (2008)

  20. O’Neil, B.: Semi-Riemannian Geometry. A Series of Monographs and Textbooks. Samuel Eilenberg and Hyman Bass, Orlando (1983)

  21. Penrose, R.: Techniques of Differential Topology in Relativity. Society for Industrial and Applied Mathematics, Philadelphia, PA (1972). Conference Board of the Mathematical Sciences Regional Conference Series in Applied Mathematics, No. 7

  22. Penrose, R.: Republication of: conformal treatment of infinity. Gen. Relativ. Gravit. 43(3), 901–922 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  23. Ruh, E.A.: On Automorphism Group of a G-Structure. Ph.D. Thesis. Brown University (1864)

  24. Sachs, R.K., Wu, H.: General relativity and cosmology. Bull. Am. Math. Soc. 83, 1101–1164 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  25. Sbierski, J.: On the Existence of a Maximal Cauchy Development for the Einstein Equations—A Dezornification. arXiv:1309.7591

Download references

Acknowledgments

I want to thanks my Ph.D. advisor Thierry Barbot, from University of Avignon, and the professor Virginie Charette, from University of Sherbrooke, for the suggestions and the helpful re-reading of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clara Rossi Salvemini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salvemini, C.R. Maximal extension of conformally flat globally hyperbolic space–times. Geom Dedicata 174, 235–260 (2015). https://doi.org/10.1007/s10711-014-0015-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-014-0015-y

Keywords

Mathematics Subject Classification

Navigation