Skip to main content

Advertisement

Log in

A perspective on the evolution of germ-cell development and germinal mosaics of deleterious mutations

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

In many animals a small number of primordial germ cells (PGCs) are set aside early in development, mitosis and mitochondrial DNA syntheses are arrested, transcription is stopped or reduced, and the PGCs migrate later to the emerging gonads and become germ cells. What could be the evolutionary advantage of sequestering non-dividing PGCs early in development? A commonly cited advantage is a reduction in the number of new deleterious mutations that would occur if there were additional divisions in PGCs early in development. We would like to add to this advantage the fact that these additional mutations in PGCs give rise to germinal mosaics (i.e., premeiotic clusters of mutation) in multiple progeny of the same individual, thus having a larger detrimental effect on the evolutionary fitness of their carriers. Here, we reviewed published studies providing evidence that germinal mosaics of deleterious mutant alleles are not rare, occur for all types of genetic damage, and have been observed in all tested organisms and in nature. We propose the hypothesis that PGC sequestration during early animal development may have evolved in part in response to selection for preventing the occurrence of premeiotic clusters of deleterious mutant alleles, and describe a series of predictions that would allow the assessment of the potential role of germinal mosaics on the evolution of PGC sequestration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  • Abrahamson S, Meyer HU, Hiome E, Daniel G (1966) Further evidence demonstrating germinal selection in early premeiotic germ cells of Drosophila males. Genetics 54:687–696

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bachvarova RF, Crother BI, Johnson AD (2009) Evolution of germ cell development in tetrapods: comparison of urodeles and amniotes. Evol Dev 11:603–609

    Article  PubMed  Google Scholar 

  • Bechman KB, Ames BN (1997) Oxidative decay of DNA. J Biol Chem 272:19633–19636

    Article  Google Scholar 

  • Bernards A, Gusella JF (1994) The importance of genetic mosaicism in human disease. N Engl J Med 331:1447–1449

    Article  CAS  PubMed  Google Scholar 

  • Bunyan DJ, Robinson DO, Collins AL, Cockerwell AE, Bullman HMS, Whittaker PA (1994) Germline and somatic mosaicism in a female carrier of Duchenne muscular dystrophy. Hum Genet 93:541–544

    Article  CAS  PubMed  Google Scholar 

  • Buss LW (1987) The evolution of individuality. Princeton University Press, Princeton

    Google Scholar 

  • Campbell IM, Yuan B, Robberecht C, Pfundt R, Szafranski P et al (2014) Parental somatic mosaicism is underrecognized and influences recurrence risk of genomic disorders. Amer J Hum Genet 95:173–182

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chilcote RR, Le Beau MM, Dampier C, Pergament E, Verlinsky Y, Monhandas N, Frischer H, Rowley JD (1987) Association of red cell spherocytosis with deletion of the short arm of chromosome 8. Blood 69:156–159

    CAS  PubMed  Google Scholar 

  • Cinalli RM, Rangan P, Lehmann R (2008) Germ cells are forever. Cell 132:559–562

    Article  CAS  PubMed  Google Scholar 

  • Coffman CR (2003) Cell migration and programmed cell death of Drosophila germ cells. Ann NY Acad Sci 995:117–126

    Article  CAS  PubMed  Google Scholar 

  • Coffman CR, Strohm RC, Oakley FD, Yamada Y, Przychodzin D, Boswell RE (2002) Identification of X-linked genes required for migration and programmed cell death of Drosophila melanogaster germ cells. Genetics 162:273–284

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cossee M, Schmitt M, Campuzano V, Reutenauer L, Moutou C, Mandel J, Koenig M (1997) Evolution of the Friedreich’s ataxia trinucleotide repeat expansion: founder effect and premutations. Proc Natl Acad Sci USA 94:7452–7457

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Crow JF (1995) Spontaneous mutation as a risk factor. Exp Clin Immunogenet 12:121–128

    CAS  PubMed  Google Scholar 

  • Deshpande G, Sethi N, Schedl P (2007) Toutvelu, a regulator of heparin sulfate proteoglycan biosynthesis, controls guidance cues for germ-cell migration. Genetics 176:905–912

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dixon KE (1994) Evolutionary aspects of primordial germ cell formation. In: Marsh J, Goode J (eds) Germline development. Wiley, New York, pp 92–120

    Google Scholar 

  • Drake JW, Charlesworth B, Charlesworth D, Crow JF (1998) Rates of spontaneous mutation. Genetics 148:1667–1686

    PubMed Central  CAS  PubMed  Google Scholar 

  • Drost JB, Lee WR (1998) The developmental basis for germline mosaicism in mouse and Drosophila melanogaster. Genetica 102(103):421–443

    Article  PubMed  Google Scholar 

  • Edwards MJ, Wenstrup RJ, Byers PH, Cohn DH (1992) Recurrence of lethal osteogenesis imperfect due to a parental mosaicism for a mutation in the COL1A2 gene type I collagen: the mosaic parent exhibits phenotypic features of a mild form of the disease. Hum Mut 1:47–54

    Article  CAS  PubMed  Google Scholar 

  • Engel U, Bohlander SK, Bink K, Hinney B, Laccone F, Bartels I (2001) Pseudo deicentric chromosome (5;21): a rare example of maternal germline mosaicism. Hum Reprod 16:63–66

    Article  CAS  PubMed  Google Scholar 

  • Extavour CG, Akam M (2003) Mechanisms of germ cell specification across the metazoans: epigenesist and preformation. Development 130:5869–5884

    Article  CAS  PubMed  Google Scholar 

  • Frank SA (2010) Somatic evolutionary genomics: mutations during development cause highly variable genetic mosaicism with risk of cancer and neurodegeneration. Proc Natl Acad Sci USA 107:1725–1730

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fu YX, Huai H (2003) Estimating mutation rate: how to count mutations? Genetics 164:797–805

    PubMed Central  PubMed  Google Scholar 

  • Gao JJ, Pan XR, Hu J, Ma L, Wu JM et al (2011) Highly variable recessive lethal or nearly lethal mutation rates during germline development of male Drosophila melanogaster. Proc Natl Acad Sci USA 108:15914–15919

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gao JJ, Pan XR, Hu J, Ma L, Wu JM et al (2014) Pattern of mutation rate in germline of Drosophila melanogaster males from a large-scale mutation screening experiment. G3: Genes, Genomes, Genetics: doi:10.1534/g3.114.011056

  • Gill DE, Chao L, Perkins SL, Wolf JB (1995) Genetic mosaicism in plants and clonal animals. Annu Rev Ecol Syst 26:423–444

    Article  Google Scholar 

  • Hayashi K, de Sousa Chuva, Lopes SM, Surani MA (2007) Germ cell specification in mice. Science 316:394–396

    Article  CAS  PubMed  Google Scholar 

  • Hecht F (1987) Human aneuploidy: trisomic births are nonrandom events. In: Vig BK, Sandberg AA (eds) Aneuploidy, part a: incidence and ethiology. Alan R. Liss Inc, New York, pp 233–235

    Google Scholar 

  • Hemberger M, Dean W, Reik W (2009) Epigenetic dynamics of stem cells and cell lineage commitment: digging Waddington’s canal. Nat Rev Mol Cell Biology 10:526–537

    Article  CAS  Google Scholar 

  • Huai H, Woodruff RC (1998) Clusters of new identical mutants and the fate of underdominant mutations. Genetica 102(103):489–505

    Article  PubMed  Google Scholar 

  • Ikenishi K (1998) Germ plasm in Caenorhabditis elegans, Drosophila and Xenopus. Develop Growth Differ 40:1–10

    Article  CAS  Google Scholar 

  • Kong A, Frigge ML, Masson G, Besenbacher S, Sulem P et al (2012) Rate of de novo mutations and the importance of father’s age to disease risk. Nature 488:471–475

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lynch M (2010) Rate, molecular spectrum, and consequences of human mutation. Proc Natl Acad Sci USA 107:961–968

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Matova N, Cooley L (2001) Comparative aspects of animal oogenesis. Dev Biol 231:291–320

    Article  CAS  PubMed  Google Scholar 

  • Michod RE (1997) Evolution of the individual. Amer Nat 150:S5–S21

    Article  Google Scholar 

  • Molyneaux K, Wylie C (2004) Primordial germ cell migration. Int J Dev Biol 48:537–544

    Article  CAS  PubMed  Google Scholar 

  • Namikawa C, Suzumori K, Fukushima Y, Sasaki M, Hata A (1995) Recurrence of osteogenesis imperfect because of paternal mosaicism: gly862- > Ser substitution in a type I collagen gene (COL1A1). Hum Genet 95:666–670

    Article  CAS  PubMed  Google Scholar 

  • Nei M (2013) Mutation-driven evolution. Oxford University Press, Oxford

    Google Scholar 

  • Nieuwkoop PD, Sutasurya LA (1981) Primordial germ cells in the invertebrates: from epigenesis to preformation. Cambridge University Press, Cambridge

    Google Scholar 

  • Otto SP, Hastings IM (1998) Mutation and selection within the individual. Genetica 102(103):507–524

    Article  PubMed  Google Scholar 

  • Pocha SM, Montell DJ (2014) Cellular and molecular mechanisms of single and collective cell migrations in Drosophila: themes and variations. Annu Rev Genet 48:295–318

    Article  CAS  PubMed  Google Scholar 

  • Raz E (2003) Primordial germ-cell development: the zebrafish perspective. Nat Rev Genet 4:690–700

    Article  CAS  PubMed  Google Scholar 

  • Richardson BE, Lehmann R (2010) Mechanisms guiding primordial germ cell migration: strategies from different organisms. Nat Rev Molecular Cell Biology 11:37–49

    Article  CAS  PubMed  Google Scholar 

  • Russell LB, Russell WL (1996) Spontaneous mutations recovered as mosaics in the mouse specific-locus test. Proc Natl Acad Sci USA 93:13072–13077

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Saitou M, Yemaji M (2010) Germ cell specification in mice: signaling, Transcription regulation, and epigenetic consequences. Reproduction 139:931–942

    Article  CAS  PubMed  Google Scholar 

  • Santos AC, Lehmann R (2004) Germ cell specification and migration in Drosophila and beyond. Curr Biol 14:R578–R589

    Article  CAS  PubMed  Google Scholar 

  • Selby PB (1998) Major impacts of gonadal mosaicism on hereditary risk estimation, origin of hereditary diseases, and evolution. Genetica 102(103):445–462

    Article  PubMed  Google Scholar 

  • Seydoux G, Braun RE (2006) Pathway to totipotency: lessons from germ cells. Cell 127:891–903

    Article  CAS  PubMed  Google Scholar 

  • Sommer SS, Scaringe WA, Hill KA (2001) Human germline mutation in the factor IX gene. Mut Res 487:1–17

    Article  CAS  Google Scholar 

  • Sonnenblick BP (1965) The early embryology of Drosophila melanogaster. In: Demerec M (ed) Biology of Drosophila. Hafner Publishing Company, New York, pp 62–167

    Google Scholar 

  • Staffman EE, Lasko P (1999) Germline development in vertebrates and Invertebrates. Cell Mol Life Sci 55:1141–1163

    Article  Google Scholar 

  • Stewart JB, Larsson NG (2014) Keeping mtDNA in shape between generations. PLoS Genet 10(10):e1004670. doi:10.1371/journal.pgen.1004670

    Article  PubMed Central  PubMed  Google Scholar 

  • Strome S, Lehmann R (2007) Germ versus soma decisions: lessons from flies and worms. Science 316:392–393

    Article  CAS  PubMed  Google Scholar 

  • Thompson JN Jr, Woodruff RC, Huai H (1998) Mutation rate: a simple concept has become complex. Environ Mol Mutagen 32:292–300

    Article  CAS  PubMed  Google Scholar 

  • Trivers RL, Willard DE (1973) Natural selection of parental ability to vary the sex ratio of offspring. Science 179:90–92

    Article  CAS  PubMed  Google Scholar 

  • Underwood EM, Caulton JH, Allen DD, Mahowald AP (1980) Developmental fate of pole cells in Drosophila melanogaster. Develop Biol 77:303–314

    Article  CAS  PubMed  Google Scholar 

  • Venn O, Turner I, Mathieson I, de Grott N, Bontrop R, McVean G (2014) Strong male bias drives germline mutation in chimpanzees. Science 344:1272–1275

    Article  CAS  PubMed  Google Scholar 

  • Walter CA, Intano GW, McCarrey JR, McMahan CA, Walter RB (1998) Mutation frequency declines during spermatogenesis in your mice but increases in old mice. Proc Natl Acad Sci USA 95:10015–10019

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Western PS, Miles DC, van den Bergen JA, Burton M, Sinclair AH (2008) Dynamic regulation of mitotic arrest in fetal male germ cells. Stem Cells 26:339–347

    Article  CAS  PubMed  Google Scholar 

  • Wolpert L, Tickle C, Jessell T, Lawrence P, Meyerowitz E, Robertson E, Smith J (2011) Principles of development. Oxford University Press, Oxford

    Google Scholar 

  • Woodruff RC, Thompson JN Jr (1992) Have premeiotic clusters of mutation been overlooked in evolutionary theory? J Evol Biol 5:457–464

    Article  Google Scholar 

  • Woodruff RC, Thompson JN Jr (2005) The fundamental theorem of neutral evolution: rates of substitution and mutations should factor in premeiotic clusters. Genetica 125:333–339

    Article  CAS  PubMed  Google Scholar 

  • Woodruff RC, Zhang M (2009) Adaptation from leaps in the dark. J Heredity 100:7–10

    Article  CAS  Google Scholar 

  • Woodruff RC, Huai H, Thompson JN Jr (1996) Clusters of identical new mutation in the evolutionary landscape. Genetica 98:149–160

    Article  CAS  PubMed  Google Scholar 

  • Wylie C (1999) Germ cells. Cell 96:165–174

    Article  CAS  PubMed  Google Scholar 

  • Yoon SR, Dubeau L, de Young M, Wexler NS, Arnheim N (2003) Huntington disease expansion mutations in humans can occur before meiosis is completed. Proc Natl Acad Sci USA 100:8834–8838

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhuang J, Tromp G, Kuinaniemi H, Castells S, Prockop DJ (1996) Substitution of arginine for glycine at position 154 of the α1 chain of type I collagen in a variant of osteogenesis imperfecta: comparison to previous cases with the same mutation. Amer J Med Genet 61:111–116

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank James N. Thompson, Jr. for his comments on the manuscript and suggestions, and the Associate Editor and an anonymous reviewer for their constructive suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronny C. Woodruff.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standard

This article does not contain any experiments with animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Woodruff, R.C., Balinski, M.A. & Bouzat, J.L. A perspective on the evolution of germ-cell development and germinal mosaics of deleterious mutations. Genetica 143, 563–569 (2015). https://doi.org/10.1007/s10709-015-9854-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-015-9854-1

Keywords

Navigation