Skip to main content
Log in

Clusters of identical new mutation in the evolutionary landscape

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

In contrast to the common assumption that each new mutant results from a unique, independent mutation event, clusters of identical premeiotic mutant alleles are common. Clusters can produce large numbers of related individuals carrying identical copies of the same new genetic change. By entering the gene pool in multiple copies at one time, clusters can influence fundamental processes of population genetics. Here we report evidence that clusters can increase the arrival and fixation probabilities and can lengthen the average time to extinction of new mutations. We also suggest it may be necessary to reconsider other fundamental elements of population genetic theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agerholm J.S., A.M. Lund, B. Block, J. Reibel, A. Basse & J. Ambjerg, 1994. Osteogenesis imperfecta in Holstein-Friesian calves. J. Vet. Med. A 41: 128–138.

    Google Scholar 

  • Bakker E., H. Veenema, J.T.Den Dunnen, C.Van Broeekhovan, P.M. Grootscholten, E.J. Bonten, G.J.B.Van Ommen & P.L. Pearson, 1989. Germinal mosacism increases the recurrence risk for ‘new” Duchenne muscular dystrophy mutations. J. Med. Genet. 26: 553–559.

    Google Scholar 

  • Bernards A. & J.J. Gusella, 1994. The importance of genetic mosaicism in human disease. N. Engl. J. Med. 331: 1447–1449.

    Google Scholar 

  • Bridges C.B., 1919. The developmental stages at which mutstions occur in the germ tract. Proc. Soc. Exp. Biol. Med. 17: 1–2.

    Google Scholar 

  • Bunyan D.J., D.O. Robinson, A.L. Collins, A.E. Cockwell, H.M.S. Bullman & P.A. Whittaker, 1994. Germline and somatic mosaicism in a female carrier of Duchenne muscular dystrophy. Hum Genet. 93: 541–544.

    Google Scholar 

  • Buss L.W., 1983. Evolution, development, and the units of selection. Proc. Natl. Acad. Sci. USA 80: 1387–1391.

    Google Scholar 

  • Castle W.E., 1929. A mosaic (intense-dilute) coat pattern in the rabbit. J. Exp. Zool. 52: 471–480.

    Google Scholar 

  • Chakraborty R., P.A. Fuerst & M. Nel, 1980. Statistical studies on protein polymorphism in natural populations. III. Distribution of allele frequencies and the number of alleles per locus. Genetics 94: 1039–1063.

    Google Scholar 

  • Crow J.F., 1970. Genstic loads and the cost of natural selection, pp. 159–168 in Mathematical Topics in Population Genetics, edited by K. Kojlma. Springer Verlag, New York.

    Google Scholar 

  • Crow J.F. & M. Kimura, 1970. An Introduction to Population Geneties Theory, Minneapolis, MN: Surgess Publishing Company.

    Google Scholar 

  • Dobzhansky Th. & S. Wright, 1941. Genetics of natural populations. V. Relations between mutation rate and accumulation of lethals in populations of Drosophila pseudoebsura. Genetics 26: 23–51.

    Google Scholar 

  • Easteal S., C. Collet & D. Betty, 1995. The Mammalian Molecular Clock. Austin, Tx: R. G. Landes.

    Google Scholar 

  • Edwards J.H., 1989. Familiarity, recessivity and germline mosaicism. Ana. Hum. Genet. 53: 33–47.

    Google Scholar 

  • Ehling U.H., 1984. Methods to estimate the genetic risk, pp. 292–318 in Mutation in Man, edited by G. Obe. Springer-Veriag, Berlin.

    Google Scholar 

  • Ewens W.J., 1972. The sampling theory of selectively neutral alleles. Theor. Pop. Biol. 3: 87–112.

    Google Scholar 

  • Falconer D.S., 1951. Two new mutants, ‘trembler’ and ‘reeler’, with neurological actions in the house mouse (Mus musculus L.). J. Genetics 50: 192–201.

    Google Scholar 

  • Favor J. & A. Neuhauser-Klaus, 1994. Genetic mosaicism in the house mouse. Ann. Rev. Genet. 28: 27–47.

    Google Scholar 

  • Fisher R.A., 1922. On the dominance ratio. Proc. Roy. Soc. Edinburgh 42: 321–341.

    Google Scholar 

  • Fisher R.A., 1930. Note on a tricolour (mosaic) mouse. J. Genet. 23: 77–81.

    Google Scholar 

  • Frankham R., 1995. Effective population size/adult population size ratios in wildlife: a review. Genetical Res. 66: 95–117.

    Google Scholar 

  • Gale J.S., 1990. Theoretical Population Genetics. London: Unwin Hyman.

    Google Scholar 

  • Geliebter J., R.A. Zeff, R.W. Melvold & S.G. Nathenson, 1986. Mitotic recombination in germ cells generated two major histocompatibility complex mutant genes shown to be identical by RNA sequence analysis: Kbm9 and Kbm6. Proc. Nat. Acad. Sci. USA 83: 3371–3375.

    Google Scholar 

  • Gillespie J.H., 1991. The Causes of Molecular Evolution. Oxford: Oxford University Press.

    Google Scholar 

  • Giordano M., M.S.De Angelis, R. Cantello, N.A. Abdirisak, R. Mutani & P.M. Richiardl, 1995. Problems arising in correlating clinical and molecular data in myotonic dystrophy. Clin. Genet. 47: 302–304.

    Google Scholar 

  • Gruneberg H., 1952. The Genetics of the Mouse. The Hague: Martinus Nijhoff.

    Google Scholar 

  • Haldane J.B.S., 1932. The Causes of Evolution, London: Longmans, Green and Co.

    Google Scholar 

  • Haldane J.B.S., 1957. The cost of natural selection. J. Genetics 55: 511–524.

    Google Scholar 

  • Hall J.G., 1988. Somatic mosaicism: Observations related to clinical genetics. Am. J. Hum. Genet. 43: 355–363.

    Google Scholar 

  • Hartl D.L., 1971. Recurrence risks for germinal mosaics. Am. J. Hum. Genet. 23: 124–134.

    Google Scholar 

  • Hartl D.L. & M.M. Green, 1970. Genetic studies of germinal mosaicism in Drosophila melanogaster using the mutable w c gene. Genetics 65: 449–456.

    Google Scholar 

  • Hedrick P.W., 1981. The establishment of chromosomal variants. Evolution, 35: 322–332.

    Google Scholar 

  • Hudson R.R., M. Kreitman & M. Aquade, 1987. A test of neutral molecular evolution based on nucleotide data. Genetics 116: 153–159.

    Google Scholar 

  • Jansen G., P. Willem, M. Coerwinkel, W. Nillesen, H. Smeets, L. Vits, C. Howeler, H. Brunner & B. Wleringa, 1994. Gonosomal mosaicism in myotonic dystrophy patients: Involvement of mitotic events in (CTG)n reneat variation and selection against extreme expansion in sperm. Am. J. Hum. Genet. 50: 575–585.

    Google Scholar 

  • Kimura M., 1957. Some problems of stochastic processes in genetics. Am. Math. Stat. 28: 882–901.

    Google Scholar 

  • Kimura M., 1964. Diffusion models in population genetics. J. Applied Prob. 1: 177–232.

    Google Scholar 

  • Lande R., 1979. Effective deme size during long-term evolution estimated from rates of chromosomal rearrangement. Evolution 33: 234–251.

    Google Scholar 

  • Lazaro C., A. Gaona, M. Lynch, H. Kruyer, A. Ravella & X. Estivill 1995. Molecular characterization of the breakpoints of a 12-kb deletion in the NF1 gene in a family showing germ-line mosaicism. Am. J. Hum. Genet. 57: 1044–1049.

    Google Scholar 

  • Levinson B., A. Lehesioki, A.de la Chapelle & J. Gitschier, 1990. Molecular analysis of hemophilia A mutations in the Finnish population. Am. J. Hum. Genet. 46: 53–62.

    Google Scholar 

  • Li W.-H., 1975. The first arrival time and mean age of a deleterious mutant gene in a finite population. Am. J. Hum. Genet. 27: 274–286.

    Google Scholar 

  • Li W.-H. & M. Nei. 1972. Total number of individuals affected by a single deleterious mutation in a finite population. Am. J. Hum. Genet. 24: 667–679.

    Google Scholar 

  • Lim J.K., 1979. Site-specific instability in Drosophila melanogaster: The origin of the mutation and cytogenetic evidence for site specificity. Genetics 93: 681–701.

    Google Scholar 

  • Lindsley D.L. & G.G. Zimm. 1992. The Genome of Drosophila melanogaster. New York: Academic Press, Inc.

    Google Scholar 

  • Mackenzie H.J. & L.S. Penrose, 1951. Two pedigrees of ectrodactyly. Ann. Eugen. 16: 88–96.

    Google Scholar 

  • May R.M., 1981. Theoretical Ecology. Sunderland, Mass: Sinauer Assoc. Inc.

    Google Scholar 

  • McDonald J.H. & M. Kreitman, 1991. Adaptive protein evolution at the Adh locus in Drosophila. Nature 351: 652–654.

    Google Scholar 

  • Mestres F., L. Serra & F.J. Ayala, 1995. Colonization of the Americas by Drosophila subobsoura: Lethal-gene allelism and association with chromosomal arrangements. Genetics 140: 1297–1305.

    Google Scholar 

  • Mocrman D.G. & R.H. Waterston, 1989. Mobile Elements in Caenorhabditis elegans and Other Nematodes, pp. 537–556 in Mobile DNA, edited by D.E. Berg and M.M. Howe. American Society for Microbiology. Washington, D. C.

    Google Scholar 

  • Mohrenweiser H., 1994. Impact of the molecular spectrum of mutational lesions on estimates of germinal gene-mutation rates. Mutal. Res. 304: 119–137.

    Google Scholar 

  • Mohrenwelser H. & B. Zingg, 1995. Mesaicism: The embryo as a target for induction of mutations leading to cancer and genetic disease. Environ. Mol. Mutagen. 25 (suppl 26): 21–29.

    Google Scholar 

  • Neel J.V. & E.D. Rothman, 1978. Indireet estimates of mutation rates in tribal Amerindians. Proc. Natl. Acad. Sci. USA 75: 5585–5588.

    Google Scholar 

  • Ohia T., 1976. Role of very slightly deleterious mutations in molecular evolution and polymorphism. Theor. Pop. Biol. 10: 254–275.

    Google Scholar 

  • Puck J.M., A.E. Pepper, P. Bedard & R. Laframbois, 1995. Female germ line mosaicism as the origin of a unique IL-2 receptor gamma-chain mutation causing X-linked severe combined immunodeficiency. J. Clin. Invest. 95: 895–899.

    Google Scholar 

  • Purdom C.E., K.F. Dyer & D.G. Papworth, 1968. Spontaneous mutation in Drosophila: Studies on the rate of mutation in mature and immature male germ cells. Mutat. Res. 5: 133–146.

    Google Scholar 

  • Rinehart R.R., 1969. Spontaneous sex-linked recessive lethal frequencies from aged and non-aged spermatozoa of Drosophila melanogaster. Mutat. Res. 7: 417–423.

    Google Scholar 

  • Russell L.B., 1964. Genetic and functional mosaicism in the mouse, pp. 153–181 in The Role of Chromosomes in Development, edited by M. Locke. Academic Press, New York.

    Google Scholar 

  • Russell L.B. & W.L. Russell, 1992. Frequency and nature of specific-locus mutations induced in femaie mice by radiation and chemicals: A review. Mutat. Res. 296: 107–127.

    Google Scholar 

  • Schalet A., 1986. The distribution of and complementation relationships between spontaneous X-linked recessive lethal mutations recovered from crossing long-term laboratory stocks of Drosophila melanogaster. Mutat. Res. 163: 115–144.

    Google Scholar 

  • Searle A.G., 1974. Mutation induction in mice, pp. 131–207 in Advances in Radiation Biology, edited by J.T. Lett, H. Adler, and M. Zelle. Academic Press, New York.

    Google Scholar 

  • Shukla P.T., K. Sankaranarayanan & F.H. Sobels, 1979. Is there a proportionality between the spontaneous and the X-ray-induced tates of mutations? Mutat. Res. 61: 229–248.

    Google Scholar 

  • Slatkin M., 1985. Somatic mutations as an evolutionary force, pp. 19–30 in Evolution: Essays in Honour of John Maynard Smith, edited by P.J. Greenwood, P.M. Harvey, and M. Slatkin. Cambridge University Press, London.

    Google Scholar 

  • Steinberg C., E.H. Zackai, D.L. Eunpu, M.T. Mennuti & B.S. Emanuel, 1984. Recurrence rate of de novo 21q1q translocation Down syndrome: A study of 112 families. Am. J. Med. Genet. 17: 523–530.

    Google Scholar 

  • Tazima Y., S. Kondo & T. Sado, 1961. Two types of dose-rate dependence of radiation-induced mutation rates in spermatogonia and oogonia of the silkworm. Genetics 46: 1335–1345.

    Google Scholar 

  • van Essen A.J., S. Abbs, M. Baiget, E. Bakker, C. Boileau, C.van Broeckhoven, D. Bushby, A. Clarke, M. Claustres, A.E. Covone, M. Ferrari, A. Ferlini, G. Galluzzi, T. Grimm, C. Grubben, M. Jeanpierre, H. Kaariainen, S. Liechti-Gallati, M.A. Melis, G.-J.B.van Ommen, J.E. Pocin, H. Scheffer, M. Schwartz, A. Speer, M. Stuhrmann, C. Verellen-Dumoulin, D.E. Wilcox & L.P.ten Kate, 1992. Parental origin and germline mosaicism of deletions and duplications of the dystrophin gene: A European study. Hum. Genet. 88: 249–257.

    Google Scholar 

  • Voelker R.A., H.E. Schaffer & T. Mukai, 1980. Spontaneous allozyme mutations in Drosophila melanogaster: Rate of occurrence and nature of the mutants. Genetics 94: 961–968.

    Google Scholar 

  • Wallace B., 1968. Mutation rates for autosomal lethals in Drosophila melanogaster. Genetics 60: 389–393.

    Google Scholar 

  • Wallis G.A., B.J. Starman, A.B. Zinn & P.H. Byers, 1990. Variable expression of osteogenesis imperfecta in a nuclear family is explained by somatic mosaicism for a lethal point mutation in the alphal(I) gene (COLIA) of type I collagen in a parent. Am. J. Hum. Genet. 46: 1034–1040.

    Google Scholar 

  • Watterson G.A., 1977. Heterosis or neutrality? Genetics 85: 789–814.

    Google Scholar 

  • Whitham T.G. & C.N. Slobodchikoff, 1981. Evolution by individuals, plant-herbivore interactions, and mosaics of genetic variability: The adaptive significance of somatic mutations in plants. Oecologia 49: 287–292.

    Google Scholar 

  • Woodruff R.C. & J.N. ThompsonJr., 1992. Have premeiotic clusters of mutation been overlooked in evolutionary theory? J. Evol. Biol. 5: 457–464.

    Google Scholar 

  • Wright S., 1931. Evolution in Mendelian populations. Genetics 16: 97–159.

    Google Scholar 

  • Wright S., 1941. On the probability of fixation of reciprocal translocations. Amer. Natur. 75: 513–522.

    Google Scholar 

  • Wright S., 1960. The genetics of vital characters of the guinea pig. J. Cellular. Comp. Physiol. 56(suppl. 1): 123–151.

    Google Scholar 

  • Wright S., T. Dobzhansky & W. Hovantz, 1942. Genetics of natural populations: VII. The allelism of lethals in the third chromosome of Drosophila pseudoobscura. Genetics 27:363–394.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Woodruff, R.C., Hual, H. & Thompson, J.N. Clusters of identical new mutation in the evolutionary landscape. Genetica 98, 149–160 (1996). https://doi.org/10.1007/BF00121363

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00121363

Key words

Navigation