Skip to main content
Log in

Rate of Chromosome changes and Speciation in Reptiles

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

The chromosome changing rate (i.e. the number of chromosome rearrangements per million years) was studied in 1329 reptile species in order to evaluate the karyological evolutionary trend and the existence of possible correlations between chromosome mutations and some aspects of the evolution of this class. The results obtained highlight the existence of a general direct correlation between chromosome changing rate and number of living species, although different trends can be observed in the different orders and suborders. In turtles, the separation of pleurodires from cryptodires was accompanied by a considerable karyological diversification. Among pleurodires, the evolution of the Chelidae and Pelomedusidae was also characterised by chromosome variation, while in cryptodires a marked karyological homogeneity is observed between and within infraorders. Similarly there is no correlation between changing rate and species number in crocodiles, where the evolution of the families and genera has entailed few chromosome mutations. Chromosome variability was greater in lizards and snakes. In the formers variations in chromosome changing rate accompanied the separation of the infraorders and the evolution of most of the families and of some genera. The origin of snakes has also been accompanied by a marked karyological diversification, while the subsequent evolution of the infraorders and families has entailed a high level of chromosome variability only in colubroids. The karyological evolution in reptiles generally entailed a progressive reduction in chromosome changing rate, albeit with differences in the diverse orders and suborders. This trend seems to be consistent with the “canalization model” as originally proposed by Bickham and Baker in [Bickham, J.W. & R J. Baker, 1979. Bull. Carnegie Mus. Nat. Hist. 13: 70–84.]  However, several inconsistencies have been found excluding that in this class the ultimate goal of chromosome variations was the achievement of a so-called ``optimum karyotype'' as suggested by the above-mentioned theory. Other mechanisms could underpin chromosome variability in Reptiles. Among them a genomic composition more or less favourable to promoting chromosome rearrangements and factors favouring the fixation of a mutant karyotype in condition of homozygosis. Turtles and crocodiles would have a genome characterised by large chromosomes and a low level of chromosome compartmentalisation limiting the recombination and the frequency of rearrangements. A low rate of chromosome variability modifying little if at all the gene linkage groups would have favoured a conservative evolutionary strategy. In the course of evolution, lizards and snakes could have achieved a genome characterised by smaller chromosomes and a higher level of compartmentalisation. This would have raised the frequency of recombination and consequently an evolutionary strategy promoting a higher degree of variability and a greater level of speciation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • R.J. Baker J.W. Bickham (1984) ArticleTitleKaryotypic megaevolution by any other name: a response to Marks Syst. Zool. 33 339–341

    Google Scholar 

  • M.J. Benton (2000) Vertebrate Paleontology Blackwell Science Oxford, London, Edinburgh, Malden, Carlton, Paris

    Google Scholar 

  • G. Bernardi (1993) ArticleTitleGenome organisation and species formation in vertebrates J. Mol. Evol. 37 331–337 Occurrence Handle8308903

    PubMed  Google Scholar 

  • J.W. Bickham (1984) Patterns and modes of chromosomal evolution in reptiles A.K. Sharma A. Sharma. (Eds) in Chromosomes in Evolution and Eukaryotic groups NumberInSeries2 CRC, Boca Raton 13–40

    Google Scholar 

  • J.W. Bickham R.J. Baker (1979) ArticleTitleCanalization model of chromosomal evolution Bull. Carnegie Mus. Nat. Hist. 13 70–84

    Google Scholar 

  • J.A. Blake (1986) ArticleTitleComplex chromosomal variation in natural populations of the Jamaican lizard Anolis grahami Genetica 69 3–17 Occurrence Handle10.1007/BF00122929

    Article  Google Scholar 

  • H.A.J. Bosch in Particleden G. Odierna G. Aprea M. Barucca A. Canapa T. Capriglione E. Olmo (2003) ArticleTitleKaryological and genetic variation in the Middle Eastern lacertid lizards Lacerta laevis and Lacerta kulzeri-complex: a case of chromosomal allopatric speciation Chrom. Res. 11 165–178 Occurrence Handle10.1023/A:1022872016503 Occurrence Handle12733643

    Article  PubMed  Google Scholar 

  • J. Britton-Davidian (2001) ArticleTitleHow do chromosomal changes fit in? J Evol. Biol. 14 872–873 Occurrence Handle10.1046/j.1420-9101.2001.00341.x

    Article  Google Scholar 

  • G.L. Bush S.M. Case A.C. Wilson J.L. Patton (1977) ArticleTitleRapid speciation and chromosomal evolution in mammals Proc. Natl. Acad. Sci. USA 74 3942–3946 Occurrence Handle269445

    PubMed  Google Scholar 

  • T. Capriglione (2000) Repetitive DNA as a tool to study the phylogeny of cold-blooded vertebrates E. Olmo C.A. Redi (Eds) in Chromosomes Today NumberInSeries13 Birkhauser Basel Boston, Berlin 183–194

    Google Scholar 

  • T. Capriglione M.G. Santo ParticleDe G. Odierna E. Olmo (1998) ArticleTitleAn alphoid-like satellite DNA sequences is present in the genome of a lacertid lizard J. Mol. Evol. 46 240–244 Occurrence Handle9452526

    PubMed  Google Scholar 

  • R.L. Carroll ( 1988) Vertebrate Paleontology and Evolution Freeman New York

    Google Scholar 

  • B. Charlesworth R. Lande M. Slatkin (1982) ArticleTitleA neo-Darwinian commentary on macroevolution Evolution 26 474–498

    Google Scholar 

  • R.K. Chesser R.J. Baker (1986) ArticleTitleOn factors affecting the fixation of chromosomal rearrangements and neutral genes: computer simulations Evolution 40 625–632

    Google Scholar 

  • O. Cobror E. Olmo G. Odierna F. Angelini G. Ciarcia (1986) ArticleTitleCyclic variation of chiasma frequency and distribution in Podarcis sicula (Reptilia: Lacertidae) Genetica 71 31–37 Occurrence Handle10.1007/BF00123230

    Article  Google Scholar 

  • E.G. Cothran M.H. Smith (1983) ArticleTitleChromosomal and genetic divergence in mammals Syst. Zool. 32 360–368

    Google Scholar 

  • J.A. Coyne (1984) ArticleTitleCorrelation between heterozygosity and rate of chromosome evolution in animals Am. Nat. 123 725–729 Occurrence Handle10.1086/284234

    Article  Google Scholar 

  • G. Dobigny C. Ozouf-Costaz P.D. Waters C. Bonillo J-P. Coutanceau V. Volobouev (2004) ArticleTitleLINE−1 amplification accompanies explosive genome repatterning in rodents Chrom. Res. 12 787–793 Occurrence Handle10.1007/s10577-005-5265-y Occurrence Handle15702417

    Article  PubMed  Google Scholar 

  • S.C. Donnellan (1991) ArticleTitleChromosomes of Australian lygosomine skinks (Lacertilia: Scincidae).II. The genus Lampropholis Genetica 83 223–234 Occurrence Handle10.1007/BF00126228

    Article  Google Scholar 

  • H.G. Dowling W.E. Duellman (1978) Systematic Herpetology: a synopsis of families and higher categories HISS Publications New York

    Google Scholar 

  • R. Estes (1983) The fossil record and early distribution of lizards A.J. Rhodin K. Miyata (Eds) in Advances in Herpetology and Evolutionary Biology Mus. Comp. Zool. Harvard Univ Cambridge, Mass 365–398

    Google Scholar 

  • A.J. Flavell V. Jackson M.P. Iqbal I. Riach S. Waddell (1995) ArticleTitleTy1–copia group retrotransposon sequences in amphibia and reptilia Mol. Gen. Genet. 246 65–71 Occurrence Handle10.1007/BF00290134 Occurrence Handle7823913

    Article  PubMed  Google Scholar 

  • M.R.J. Forstner S.K. Davis E. Arevalo (1995) ArticleTitleSupport for the hypothesis of Anguimorph ancestry for the suborder Serpentes from phylogenetic analysis of mitochondrial DNA sequences Mol. Phylog. Evol. 4 93–102 Occurrence Handle10.1006/mpev.1995.1010

    Article  Google Scholar 

  • D.J. Futuyma G.C. Mayer (1980) ArticleTitleNon-allopatric speciation in animals Syst. Zool. 29 254–271

    Google Scholar 

  • G.C. Gorman (1973) The chromosomes of the Reptilia, a cytotaxonomic interpretation A.B. Chiarelli E. Capanna (Eds) in Cytotaxonomy and Vertebrate Evolution Academic Press London, New York 349–424

    Google Scholar 

  • W.P. Hall R.K. Selander (1973) ArticleTitleHybridization of karyotypically differentiated populations in the Sceloporus␣grammicus complex (Iguanidae) Evolution 27 226–242

    Google Scholar 

  • S. Hughes D. Mouchiroud (2001) ArticleTitleHigh evolutionary rates in nuclear genes of squamates J. Mol. Evol. 53 70–76 Occurrence Handle11683325

    PubMed  Google Scholar 

  • D.B. Kaback V. Guacci D. Barber J.W. Mahon (1992) ArticleTitleChromosome size-dependent control of meiotic recombination Science 256 228–232 Occurrence Handle1566070

    PubMed  Google Scholar 

  • M. King (1984) ArticleTitleKaryotypic evolution in Gehyra (Gekkonidae: Reptilia) IV.Chromosome change and speciation Genetica 64 101–114 Occurrence Handle10.1007/BF00120260

    Article  Google Scholar 

  • M. King (1985) ArticleTitleThe canalization model of chromosomal evolution: a critique Syst. Zool. 34 69–75

    Google Scholar 

  • M. King (1987) ArticleTitleChromosomal rearrangements, speciation and the theoretical approach Heredity 59 1–6 Occurrence Handle3610656

    PubMed  Google Scholar 

  • M. King (1995) Species evolution the role of chromosome change Cambridge University Press Cambridge New York, Melbourne

    Google Scholar 

  • M. King D. Hayman (1978) ArticleTitleSeasonal variation of chiasma frequency in Phyllodactylus marmoratus (Gray) (Gekkonidae-Reptilia) Chromosoma 69 131–154 Occurrence Handle10.1007/BF00329913

    Article  Google Scholar 

  • M. King R. Rofe (1976) ArticleTitleKaryotypic variation in the Australian gecko Phyllodactylus marmoratus (Gray) (Gekkonidae: Reptilia) Chromosoma 54 75–87 Occurrence Handle10.1007/BF00331835 Occurrence Handle1248335

    Article  PubMed  Google Scholar 

  • D. Kordis F. Gubensek (1995) ArticleTitleUnusual horizontal transfer of a long interspersed nuclear element between distant vertebrate classes Evolution 95 10704–10709

    Google Scholar 

  • M. Lamborot A. Espinoza E. Alvarez (1979) ArticleTitleKaryotypic variation in Chilean lizards of the genus Liolaemus (Iguanidae) Experientia 35 593–594 Occurrence Handle10.1007/BF01960338

    Article  Google Scholar 

  • M. Lamborot E. Alvarez-Sarret (1993) ArticleTitleKaryotypic variation within and between populations of Liolaemus monticola (Tropiduridae) separated by the Maipo river in the coastal range of coastal Chile Herpetologica 49 435–449

    Google Scholar 

  • Larson, A., E.M. Prager & A.C. Wilson, 1984. Chromosomal evolution, speciation and morphological change in vertebrates the role of social behaviour, pp. 215–228 in Chromosomes Today Vol. 8

  • C. Moritz (1983) ArticleTitleParthenogenesis in the endemic Australian lizards Heteronotia binoei (Gekkonidae) Science 220 735–737

    Google Scholar 

  • C. Moritz (1984) ArticleTitleThe origin and evolution of parthenogenesis in Heteronotia binoei (Gekkonidae).I. Chromosome banding studies Chromosoma 89 151–162 Occurrence Handle10.1007/BF00292899

    Article  Google Scholar 

  • M.C. Muhlmann-Diaz B.A. Ulsh F.W. Whicker T.G. Hinton J.D. Congdon J.F. Robinson J.S. Bedford (2001) ArticleTitleConservation of chromosome 1 in turtles over 66 million years Cytogenet. Cell Genet. 92 139–143 Occurrence Handle10.1159/000056885 Occurrence Handle11306813

    Article  PubMed  Google Scholar 

  • I. Nobuhisa T. Ogawa M. Deshimaru T. Chijiwa K-I. Nakashima Y. Chuman Y. Shimohigashi Y. Fukumaki S. Hattori M. Ohno (1998) ArticleTitleRetrotransposable CR1-like␣elements in crotaline snake genomes Toxicon 36 915–920 Occurrence Handle10.1016/S0041-0101(97)00104-9 Occurrence Handle9663697

    Article  PubMed  Google Scholar 

  • G. Odierna G. Aprea O.J. Arribas T. Capriglione V. Caputo E. Olmo (1996) ArticleTitleThe karyology of the Iberian rock lizards Herpetologica 52 542–550

    Google Scholar 

  • E. Olmo (1986) A. Reptilia B. John (Eds) Animal Cytogenetics 4 Chordata 3 Gebrueder Borntraeger Berlin, Stuttgart

    Google Scholar 

  • E. Olmo (2003) ArticleTitleReptiles: a group of transition in the evolution of genome size and of the nucleotypic effect Cytogenet. Genome Res. 101 166–171 Occurrence Handle10.1159/000074174 Occurrence Handle14610359

    Article  PubMed  Google Scholar 

  • E. Olmo G. Aprea O.J. Arribas M. Barucca A. Canapa T. Capriglione H.A.J. in Bosch Particleden G. Odierna ( 2004) Chromosome variability and speciation in some lacertid complexes V. Pérez-Mellado N. Riera A. Perera (Eds) in The Biology of Lacertid Lizards. Evolutionary and Ecological Perspectives Institut Menorquì d’Estudis Recerca 8 259–267

    Google Scholar 

  • E. Olmo T. Capriglione G. Odierna (1989) ArticleTitleGenome size evolution in vertebrates: trends and constraints Comp. Biochem. Physiol. 92B 447–453

    Google Scholar 

  • E. Olmo G. Odierna T. Capriglione A. Cardone (1990) DNA and chromosome evolution in lacertid lizards E. Olmo (Eds) in Cytogenetics of Amphibians and Reptiles Birkhauser, Basel Boston, Berlin 181–204

    Google Scholar 

  • E. Olmo T. Capriglione G. Odierna (2002) ArticleTitleDifferent genomic evolutionary rates in the various reptile lineages Gene 295 317–321 Occurrence Handle10.1016/S0378-1119(02)00685-6 Occurrence Handle12354667

    Article  PubMed  Google Scholar 

  • J.L. Patton S.W. Sherwood (1983) ArticleTitleChromosome evolution and speciation in rodents Ann. Rev. Ecol. Syst. 14 139–158 Occurrence Handle10.1146/annurev.es.14.110183.001035

    Article  Google Scholar 

  • D. Peccinini T.M.B. Almeida (1986) ArticleTitleChromosomal variation, nucleolar organizers and constitutive heterochromatin in the genus Ameiva and Cnemidophorus (Sauria: Teiidae) Caryologia 39 227–237

    Google Scholar 

  • K.C. Pellegrino M.T. Rodrigues Y. Yonenaga-Yassuda (1999) ArticleTitleChromosomal evolution in the Brazilian lizards of genus Leposoma (Squamata, Gymnophthalmidae) from Amazon and Atlantic rain forests: banding patterns and FISH of telomeric sequences Hereditas 131 15–21 Occurrence Handle10.1111/j.1601-5223.1999.00015.x Occurrence Handle10628293

    Article  PubMed  Google Scholar 

  • C.A. Porter J.W. Sites SuffixJr (1987) ArticleTitleEvolution of Sceloporus grammicus complex (Sauria: Iguanidae) in central Mexico II. Studies on rates of nondisjunction and the occurrence of spontaneous chromosomal mutations Genetica 75 131–144 Occurrence Handle10.1007/BF00055257

    Article  Google Scholar 

  • F.H. Pough J.B. Heiser W.N. McFarland ( 1989) Vertebrate Life Macmillan New York

    Google Scholar 

  • P.C.H. Pritchard ( 1979) Taxonomy, evolution and zoogeography M. Harless H. Morlock. (Eds) in Turtles: Perspectives and Research Wiley New York, Chichester, Brisbane, Toronto 1–42

    Google Scholar 

  • M.B. Qumsiyeh (1994) ArticleTitleEvolution of number and morphology of mammalian chromosomes J. Hered. 85 455–465 Occurrence Handle7995926

    PubMed  Google Scholar 

  • D. Sankoff (2003) ArticleTitleRearrangements and chromosomal evolution Curr. Opin. Genet. Develop. 13 583–587 Occurrence Handle10.1016/j.gde.2003.10.006

    Article  Google Scholar 

  • J.W. Sites (1983) ArticleTitleChromosome evolution in the iguanid lizard Sceloporus grammicus. I. chromosome polymorphisms Evolution 37 38–53

    Google Scholar 

  • J.W. Sites SuffixJr. C. Moritz (1987) ArticleTitleChromosomal evolution and speciation revisited Syst. Zool. 36 153–174

    Google Scholar 

  • H. Tegelstroem T. Ebenhard H. Ryttman (1983) ArticleTitleRate of karyotypic evolution and speciation in birds Hereditas 98 235–239 Occurrence Handle6874394

    PubMed  Google Scholar 

  • Uetz, P., 2003. The EMBL Reptile Database, December 2003. http://www.reptile-database.org

  • M.J.D. White (1978) Modes of Speciation W.H. Freeman and Company San Francisco

    Google Scholar 

  • A.C. Wilson G.L. Bush S.M. Case M.C. King (1975) ArticleTitleSocial structuring of mammalian populations and rate of chromosomal evolution Proc. Natl. Acad. Sci. USA 72 5061–5065 Occurrence Handle1061091

    PubMed  Google Scholar 

  • S. Wright (1982) ArticleTitleCharacter change, speciation, and the higher taxa Evolution 36 427–443

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ettore Olmo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olmo, E. Rate of Chromosome changes and Speciation in Reptiles. Genetica 125, 185–203 (2005). https://doi.org/10.1007/s10709-005-8008-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-005-8008-2

Keywords

Navigation