Skip to main content
Log in

A discrete damage zone model for mixed-mode delamination of composites under high-cycle fatigue

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

A discrete damage zone model is developed to describe the mode-mix ratio and temperature dependent delamination of laminated composite materials under high cycle fatigue loading within the framework of the finite element method. In this approach, discrete nonlinear spring elements are placed at the finite element nodes of the laminate interface, and a combination of static and fatigue damage growth laws is used to define its constitutive behavior. The model is implemented in the commercial software Abaqus using the user element subroutine. The static damage model parameters are estimated from fracture mechanics principles, whereas the fatigue damage model parameters are calibrated by fitting the numerical results to published experimental data. A quadratic relation is proposed to describe the non-monotonic variation of fatigue damage model parameters with mode-mix ratio. Next, an Arrhenius relation is proposed for the temperature dependence of fatigue damage, in addition to the incorporation of the temperature dependence of critical fracture energy. The model is convergent upon mesh refinement; however, for accurate prediction the mesh size used for model calibration should be sufficiently small. The model predicted fatigue crack growth rates are in agreement with those obtained from a quadratic relation for the Paris law parameters for variable mode mix conditions, thus verifying the approach. While the model captures the temperature effects on delamination for mode I and 50 % mode II, our prediction deviates from experiments for pure mode II, since the corresponding damage mechanism entirely changes with temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Alfano G, Crisfield MA (2001) Finite element interface models for the delamination analysis of laminated composites: mechanical and computational issues. Int J Numer Methods Eng 50:1701–1736

    Article  Google Scholar 

  • Alfano M, Furgiuele F, Leonardi A, Maletta C, Paulino GH (2009) Mode I fracture of adhesive joints using tailored cohesive zone models. Int J Fract 157:193–204

    Article  Google Scholar 

  • Asp LE (1998) The effects of moisture and temperature on the interlaminar delamination toughness of a carbon/epoxy composite. J Compos Technol Res 58(6):967–977

    Article  Google Scholar 

  • Asp LE, Sjögren A, Greenhalgh ES (2001) Delamination growth and thresholds in a carbon/epoxy composites under fatigue loading. J Compos Technol Res 23(2):55–68

    Article  Google Scholar 

  • Barenblatt GI (1962) The mathematical theory of equilibrium cracks in brittle fracture. Adv Appl Mech 7:55–129

    Article  Google Scholar 

  • Bazant ZP (1999) Size effect on structural strength: a review. Arch Appl Mech 69(9–10):703–725

    Google Scholar 

  • Blackman B, Dear JP, Kinloch AJ, Osiyemi S (1991) The calculation of adhesive fracture energies from double-cantilever beam test specimens. J Mater Sci Lett 10:253–256

    Article  Google Scholar 

  • Blackman BRK, Hadavinia H, Kinloch AJ, Paraschi M, Williams JG (2003a) The calculation of adhesive fracture energies in mode I: revisiting the tapered double cantilever beam (TDCB) test. Eng Fract Mech 70:233–248

  • Blackman BRK, Hadavinia H, Kinloch AJ, Williams JG (2003b) The use of a cohesive zone model to study the fracture of fibre composites and adhesively-bonded joints. Int J Fract 119:25–46

  • Blackman BRK, Kinloch AJ, Paraschi M, Teo WS (2003c) Measuring the mode I adhesive fracture energy, \(G_{\rm IC}\), of structural adhesive joints: the results of an international round-robin. Int J Adhes Adhes 23:293–305

  • Blanco N, Gamstedt EK, Asp LE, Costa J (2004) Mixed-mode delamination growth in carbon-fibre composite laminates under cyclic loading. Int J Solids Struct 41(15):4219–4235

    Article  Google Scholar 

  • Camanho PP, Dávila CG, De Moura MF (2003) Numerical simulation of mixed-mode progressive delamination in composite materials. J Compos Mater 37(16):1415–1424

    Article  Google Scholar 

  • Chandra N, Li H, Shet C, Ghonem H (2002) Some issues in the application of cohesive zone models for metal-ceramic interfaces. Int J Solids Struct 39:2827–2855

    Article  Google Scholar 

  • Cui WC, Wisnom MR (1993) A combined stress-based and fracture-mechanics-based model for predicting delamination in composites. Composites 24(6):467–474

    Article  Google Scholar 

  • de Andres A, Perez JL, Ortiz M (1999) Elastoplastic finite element analysis of three-dimensional fatigue crack growth in aluminium shafts subjected to axial loading. Int J Solids Struct 36(15):2231–2258

    Article  Google Scholar 

  • Do BC, Liu W, Yang QD, Su XY (2013) Improved cohesive stress integration schemes for cohesive zone elements. Eng Fract Mech, 107:14–28, ISSN 0013–7944

  • Dugdale DS (1960) Yielding of steel sheets containing slits. J Mech Phys Solids 8(2):100–104

    Article  Google Scholar 

  • Goyal VK, Johnson ER, Davila CG (2004) Irreversible constitutive law for modeling the delamination process using interfacial surface discontinuities. Compos Struct 65(3–4):434–446

    Google Scholar 

  • Goyal VK, Johnson ER, Goyal VK (2008) Predictive strength-fracture model for composite bonded joints. Compos Struct 82(3):434–446

    Article  Google Scholar 

  • Harper PW, Hallet SR (2008) Cohesive zone length in numerical simulations of composite delamination. Eng Fract Mech 75(16):4774–4792

    Article  Google Scholar 

  • Harper PW, Hallet SR (2010) A fatigue degradation law for cohesive interface elements development and application to composite materials. Int J Fatigue 32(11):1774–1787

    Article  Google Scholar 

  • Hillerborg A, Modéer M, Petersson PE (1976) Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cem Concr Res 6:773–782

    Article  Google Scholar 

  • Jiang W-G, Hallet SR, Green BG, Wisnom MR (2007) A concise interface constitutive law for analysis of delamination and splitting in composite materials and its application to scaled notched tensile specimens. Int J Numer Methods Eng 69(9):1982–1995

    Article  Google Scholar 

  • Juntti M, Asp LE, Olsson R (1999) Assessment of evaluation methods for the mixed-mode bending test. J Compos Technol Res 21(1):37–48

    Article  Google Scholar 

  • Kawashita Luiz F, Hallett Stephen R (2012) A crack tip tracking algorithm for cohesive interface element analysis of fatigue delamination propagation in composite materials. Int J Solids Struct 49(21):2898–2913, ISSN 0020–7683

  • Khan R, Khan Z, Al-Sulaiman F, Merah N (2002) Fatigue life estimates in woven carbon fabric/epoxy composites at non-ambient temperatures. J Compos Mater 36(22):2517–2535

    Article  Google Scholar 

  • Landry B, LaPlante G (2012) Modeling delamination growth in composites under fatigue loadings of varying amplitudes. Compos Part B Eng 43(2):533–541

    Article  Google Scholar 

  • Li S, Ghosh S (2006) Multiple cohesive crack growth in brittle materials by the extended Voronoi cell finite element model. Int J Fract 141:373–393

    Article  Google Scholar 

  • Li S, Thouless MD, Waas AM, Schroeder JA, Zavattieri PD (2006) Mixed-mode cohesive-zone models for fracture of an adhesively bonded polymer–matrix composite. Eng Fract Mech 73(1):64–78

    Article  Google Scholar 

  • Liljedahl CDM, Crocombe AD, Wahab MA, Ashcroft IA (2006) Damage modelling of adhesively bonded joints. Int J Fract 141:147–161

    Article  Google Scholar 

  • Liu X, Duddu R, Waisman H (2012) Discrete damage zone model for fracture initiation and propagation. Eng Fract Mech 92:1–18

    Article  Google Scholar 

  • Mazars J (1986) A description of micro- and macroscale damage of concrete structures. Eng Fract Mech 25:729–737

    Article  Google Scholar 

  • Mi Y, Crisfield MA, Davies GAO, Hellweg HB (1998) Progressive delamination using interface elements. J Compos Mater 32:1246–1272

    Article  Google Scholar 

  • Munoz JJ, Galvanetto U, Robinson P (2006) On the numerical simulation of fatigue-driven delamination using interface elements. Int J Fatigue 28(10):1136–1146

    Article  Google Scholar 

  • Neu RW, Sehitoglu H (1989) Thermomechanical fatigue, oxidation, and creep: II. Life prediction. Metall Trans A Phys Metall Mater Sci 20(9):1769–1783

    Article  Google Scholar 

  • Nguyen O, Repetto EA, Ortiz M, Radovitzky RA (2001) A cohesive model of fatigue crack growth. Int J Fract 110(4):351–369

    Article  Google Scholar 

  • Nilsson K-F, Asp LE, Alpman JE, Nystedt L (2001) Delamination buckling and growth for delaminations at different depths in a slender composite panel. Int J Solids Struct 38(17):3039–3071

    Article  Google Scholar 

  • Paas MHJW, Schreurs PJG, Brekelmans WAM (1993) A continuum approach to brittle and fatigue damage: theory and numerical procedures. Int J Solids Struct 30(4):579–599

    Article  Google Scholar 

  • Paris P, Erdogan F (1963) Critical analysis of propagation laws. J Basic Eng 85:528–534

    Article  Google Scholar 

  • Paris P, Gomez M, Anderson W (1961) A rational analytical theory of fatigue. Trend Eng 13:9–14

    Google Scholar 

  • Park K, Paulino GH, Roesler JR (2009) A unified potential-based cohesive model of mixed-mode fracture. J Mech Phys Solids 57:891–908

    Article  Google Scholar 

  • Payan J, Hochard C (2002) Damage modelling of laminated carbon/epoxy composites under static and fatigue loadings. Int J Fatigue 24(2–4):299–306

    Article  Google Scholar 

  • Peerlings RHJ, Brekelmans WAM, de Borst R, Geers MGD (2000) Gradient-enhanced damage modelling of high-cyclic fatigue. Int J Numer Methods Eng 49(12):1547–1569

    Article  Google Scholar 

  • Pettersson KB, Neumeister JM, Kristofer Gamstedt E, Oberg H (2006) Stiffness reduction, creep, and irreversible strains in fiber composites tested in repeated interlaminar shear. Compos Struct 76(12):151–161, 2006.

  • Qiu Y, Crisfield MA, Alfano G (2001) An interface element formulation for the simulation of delamination with buckling. Eng Fract Mech 68:1755–1776

    Article  Google Scholar 

  • Reeder JR, Crews JR (1990) Mixed-mode bending method for delamination testing. AIAA J 28(7):1270–1276

    Article  Google Scholar 

  • Robinson P, Besant T, Hitchings D (2000) Delamination growth prediction using a finite element approach. In: 2nd ESIS TC4 conference on fracture of polymers, composites and adhesives, Switzerland, 27:135–147

  • Robinson P, Galvanetto U, Tumino D, Bellucci G, Violeau D (2005) Numerical simulation of fatigue–driven delamination using interface elements. Int J Numer Methods Eng 63(13):1824–1848

    Article  Google Scholar 

  • Roe KL, Siegmund T (2003) An irreversible cohesive zone model for interface fatigue crack growth simulation. Eng Fract Mech 70(2):209–232

    Article  Google Scholar 

  • Schellenkens JCJ, de Borst R (1993) A non-linear finite element approach for the analysis of mode-i free edge delamination in composites. Int J Solids Struct 30(9):1239–1253

    Article  Google Scholar 

  • Siegmund T (2004) A numerical study of transient fatigue crack growth by use of an irreversible cohesive zone model. Int J Fatigue 26(9):929–939

    Article  Google Scholar 

  • Sjogren A, Asp LE (2002) Effects of temperature on delamination growth in a carbon/epoxy composite under fatigue loading. Int J Fatigue 24(2–4):179–184

    Article  Google Scholar 

  • Skallerud B, Zhang ZL (1997) A 3D numerical study of ductile tearing and fatigue crack growth under nominal cyclic plasticity. Int J Solids Struct 34(24):3141–3161

    Article  Google Scholar 

  • Turon A, Costa J, Camanho PP, Davila CG (2007) Simulation of delamination in composites under high-cycle fatigue. Compos: Part A 38(11):2270–2282

    Article  Google Scholar 

  • van den Bosch MJ, Schreurs PJG, Geers MGD (2006) An improved description of the exponential xu and needleman cohesive zone law for mixed-mode decohesion. Int J Fract 73:1220–1234

    Google Scholar 

  • Walker EK (1970) Analysis of stresses and strains near the end of a crack traversing a plate the effect of stress ratio during crack propagation and fatigue for 2024–T3 and 7076–T6 aluminum. In: Effect of environment and complex load history on fatigue life, ASTM STP 462. Philadelphia: American Society for Testing and Materials, 24:1–14

  • Wang Y, Waisman H (2014) Progressive delamination analysis of composite materials using xfem and a discrete damage zone model. Comput Mech. doi:10.1007/s00466-014-1079-0

  • Williams JG (1988) On the calculation of energy release rates for cracked laminates. Int J Fract 36(2):101–119

    Article  Google Scholar 

  • Xie D, Waas AM (2006) Discrete cohesive zone model for mixed-mode fracture using finite element analysis. Eng Fract Mech 73:1783–1796

  • Xie D, Salvi AG, Sun C, Waas AM (2006) Discrete cohesive zone model to simulate static fracture in 2D triaxially braided carbon fiber composites. J Compos Mater 40(22):2025–2046

  • Xu X-P, Needleman A (1994) Numerical simulations of fast crack growth in brittle solids. J Mech Phys Solids 42(9):1397–1434

    Article  Google Scholar 

  • Yang B, Ravi-Chandar KA (1998) Antiplane shear crack growth under quasistatic loading in a damaging material. Int J Solids Struct 35(28–29):3695–3715

    Article  Google Scholar 

  • Yang B, Mall S, Ravi-Chandar KA (2001) A cohesive zone model for fatigue crack growth in quasibrittle materials. Int J Solids Struct 38(22–23):3927–4394

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the funding from our sponsors: SKJ and RD were supported by the Vanderbilt University Discovery Grant Program; XL and HW were supported by the National Science Foundation under grant CMMI-0856161.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravindra Duddu.

Appendices

Appendix 1: Relation between \(\rho \) and \(\Psi \)

The mixed mode bending test was proposed by Reeder and Crews (1990), shown in Fig. 14.

Fig. 14
figure 14

The geometry and boundary conditions for mixed mode bending (MMB) test

A concentrated load \(P\) is applied through the rigid lever, and the forces transferred to the beam obtained from equilibrium are,

$$\begin{aligned} P_{1}=P\dfrac{c}{L},~~~P_{2}=P\dfrac{c+L}{L} \end{aligned}$$
(46)

This mixed mode bending (MMB) system can be considered as the superposition of Mode I and Mode II (Reeder and Crews 1990), as shown in Fig. 15. Due to the y-axis symmetry of the mode II four point end notch fracture (ENF) test, it is sufficient to consider one-half of the beam as a cantilever (Robinson et al. 2005; Williams 1988)). Now, following Eqs. (38) and (41), we can write the strain energy release rate under Mode I and Mode II as,

$$\begin{aligned} G_{\mathrm {I}}=\left( \dfrac{3c-L}{4L} \right) ^{2} \dfrac{P^2 a_{0}^{2}}{WEI} \end{aligned}$$
(47)
$$\begin{aligned} G_{\mathrm {II}}=\left( \dfrac{c+L}{4L} \right) ^{2} \dfrac{3P^2 a_{0}^2}{4WEI} \end{aligned}$$
(48)

Substituting the above two expressions for \(G_{I}\) and \(G_{II}\) into Eq. 26 we get the following relation for the mode ratio \(\Psi \):

$$\begin{aligned} \Psi =\dfrac{G_{\mathrm {II}}}{G_{\mathrm {I}}+G_{\mathrm {II}}}=\dfrac{3\left( \dfrac{c}{L}+1 \right) ^2}{3\left( \dfrac{c}{L}+1 \right) ^2+4\left( 3\dfrac{c}{L}-1 \right) ^2}. \end{aligned}$$
(49)

An alternative mixed mode test is configured as shown in Fig. 16, which is equivalent to the MMB test shown in Fig. 14. The forces applied on the upper and lower arm are obtained from the superposition of Mode I and Mode II, given as,

$$\begin{aligned} P_{\mathrm {u}}=P\dfrac{c+L}{4L}+P\dfrac{3c-L}{4L} \end{aligned}$$
(50)
$$\begin{aligned} P_{\mathrm {d}}=P\dfrac{c+L}{4L}-P\dfrac{3c-L}{4L} \end{aligned}$$
(51)

The ratio between these two applied forces is defined as \(\rho \), written as,

$$\begin{aligned} \rho =\dfrac{P_{\mathrm {d}}}{P_{\mathrm {u}}}=\dfrac{\left( \dfrac{c}{L}+1 \right) -\left( 3\dfrac{c}{L}-1 \right) }{\left( \dfrac{c}{L}+1 \right) +\left( 3\dfrac{c}{L}-1 \right) }=\dfrac{1-\dfrac{\left( 3\dfrac{c}{L}-1 \right) }{\left( \dfrac{c}{L}+1 \right) }}{1+\dfrac{\left( 3\dfrac{c}{L}-1 \right) }{\left( \dfrac{c}{L}+1 \right) }}. \end{aligned}$$
(52)

From Eq. 49 we get,

$$\begin{aligned} \left( \Psi ^{-1}-1\right) = \dfrac{4\left( 3\dfrac{c}{L}-1 \right) ^2}{3\left( \dfrac{c}{L}+1 \right) ^2}. \end{aligned}$$
(53)

Substituting the above equation in Eq. 52 we obtain the following relationship for the force ratio \(\rho \) in terms of the mode ratio \(\Psi \):

$$\begin{aligned} \rho =\dfrac{1-\dfrac{\sqrt{3}}{2} (\Psi ^{-1}-1)^{1/2}}{1+\dfrac{\sqrt{3}}{2} (\Psi ^{-1}-1)^{1/2}} \end{aligned}$$
(54)
Fig. 15
figure 15

Superposition analysis of the mixed mode bending (MMB) system [Redrawn from Reeder and Crews (1990)]

Fig. 16
figure 16

Geometry and boundary conditions for an alternative mixed mode bending (MMB) test

Appendix 2: Relation between \(K_{\mathrm {e}}^0\) and \(\Psi \)

Herein, we derive the relation used in Sect. 3.2 for calculating the undamaged effective stiffness \(K_{\mathrm {e}}^0\) of a spring element under mixed mode conditions. Let us consider a mixed-mode condition when the normal and tangential separations are \(\delta _{\mathrm {n}}^*\) and \(\delta _{\mathrm {t}}^*\), respectively. Under this deformation state, let the equivalent separation reach the critical value, that is,

$$\begin{aligned} (\delta ^{{\mathrm {cr}}}_{{\mathrm {e}}})^2 = (\delta _{\mathrm {t}}^*)^2 + (\delta _{\mathrm {n}}^*)^2 \end{aligned}$$
(55)

Let us consider the case when \(\delta _{\mathrm {n}}^*<\delta ^{{\mathrm {cr}}}_{\mathrm {n}}\) and \(\delta _{\mathrm {t}}^*<\delta ^{{\mathrm {cr}}}_{\mathrm {t}}\), that is, the loading condition falls within the elastic zones of the normal and tangential damage laws, respectively. Now, the strain energy release rates under Mode I and Mode II are given by,

$$\begin{aligned} G_{\mathrm {I}} = \dfrac{1}{2} K_{\mathrm {n}}^0(\delta _{\mathrm {n}}^*)^2 ~~ {\mathrm {and}} ~~G_{\mathrm {II}} = \dfrac{1}{2} K_{\mathrm {t}}^0(\delta _{\mathrm {t}}^*)^2. \end{aligned}$$
(56)

where \(K_{n}^{0}\) and \(K_{t}^{0}\) are the undamaged normal and tangential stiffnesses of the spring element. In terms of the equivalent stiffness and separations, the total strain energy release under this mixed mode condition is given by,

$$\begin{aligned} G = \dfrac{1}{2} K_{\mathrm {e}}^0(\delta ^{{\mathrm {cr}}}_{{\mathrm {e}}})^{2} \end{aligned}$$
(57)

Now, the mixed mode ratio is defined as,

$$\begin{aligned}&\!\!\! \Psi = \dfrac{G_{\mathrm {II}}}{G} = \dfrac{K_{\mathrm {t}}^0(\delta _{\mathrm {t}}^*)^2}{K_{\mathrm {e}}^0(\delta ^{{\mathrm {cr}}}_{{\mathrm {e}}})^2},\quad \mathrm{and}\nonumber \\&\!\!\! 1 - \Psi = \dfrac{G_{\mathrm {I}}}{G} = \dfrac{K_{\mathrm {n}}^0(\delta _{\mathrm {n}}^*)^2 }{K_{\mathrm {e}}^0(\delta ^{{\mathrm {cr}}}_{{\mathrm {e}}})^2}; \end{aligned}$$
(58)

Rearranging the above two expressions we get,

$$\begin{aligned} (\delta _{\mathrm {t}}^*)^2&= \left( \dfrac{\Psi }{K_{\mathrm {t}}^0} \right) K_{\mathrm {e}}^0(\delta ^{{\mathrm {cr}}}_{{\mathrm {e}}})^{2}; ~~{\mathrm {and}}~~ \nonumber \\ (\delta _{\mathrm {n}}^*)^2&= \left( \dfrac{1 - \Psi }{K_{\mathrm {n}}^0} \right) K_{\mathrm {e}}^0(\delta ^{{\mathrm {cr}}}_{{\mathrm {e}}})^{2}; \end{aligned}$$
(59)

Substituting the above relations into Eq. (55) and simplifying, we get the relation,

$$\begin{aligned} \dfrac{1}{K_{\mathrm {e}}^0} = \dfrac{\Psi }{K_{\mathrm {t}}^0} + \dfrac{1 - \Psi }{K_{\mathrm {n}}^0} \end{aligned}$$
(60)

The above relation can be rearranged to obtain Eq. (25). Clearly, under pure Mode I conditions (\(\Psi = 0\)), we have \(K_{\mathrm {e}}^0= K_{\mathrm {n}}^0\) and under pure Mode II conditions (\(\Psi = 1\)), we have \(K_{\mathrm {e}}^0= K_{\mathrm {t}}^0\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jimenez, S., Liu, X., Duddu, R. et al. A discrete damage zone model for mixed-mode delamination of composites under high-cycle fatigue. Int J Fract 190, 53–74 (2014). https://doi.org/10.1007/s10704-014-9974-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-014-9974-0

Keywords

Navigation