Skip to main content
Log in

A Reconstruction of Quantum Mechanics

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

We show that exactly the same intuitively plausible definitions of state, observable, symmetry, dynamics, and compound systems of the classical Boolean structure of intrinsic properties of systems lead, when applied to the structure of extrinsic, relational quantum properties, to the standard quantum formalism, including the Schrödinger equation and the von Neumann–Lüders Projection Rule. This approach is then applied to resolving the paradoxes and difficulties of the orthodox interpretation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. A Boolean \(\sigma \)-complex is a closely connected generalization of a partial Boolean algebra (introduced in Kochen and Specker [14], and further studied in [15, 16]).

  2. The group \(\mathrm{Aut}(Q)\) may, in fact, be construed as a topological group by defining, for each \(\epsilon >0\), an \(\epsilon \)-neighborhood of the identity to be \(\{ \sigma \mid |p_\sigma (x)- p(x)| < \epsilon \) for all \(x\) and \(p \}\). We may then directly speak of the continuity of the map \(\sigma \), in place of the condition that \(p_{\sigma _t}(x)\) is continuous in \(t\).

  3. More precisely, we have a projective unitary representation of \(\mathbb {R}\), but such a representation of \(\mathbb {R}\) is equivalent to a vector representation. (See, e.g., Varadarajan [22]).

  4. Historically, of course, it was not such interferometry experiments, but rather spectroscopic experiments that lead Schrödinger to his equation.

  5. This is reminiscent of Aristotle’s famous sea battle in De Interpretatione: “A sea battle must either take place tomorrow or not, but it is not necessary that it should take place tomorrow neither is it necessary that it should not take place, yet it is necessary that it either should or should not take place tomorrow.”

References

  1. Bargmann, V.: Note on Wigner’s theorem on symmetry operations. J. Math. Phys. 5, 862 (1964)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. Beltrametti, E.G., Cassinelli, G.: The Logic of Quantum Mechanics. Addison-Wesley, Reading, MA (1981)

    MATH  Google Scholar 

  3. Birkhoff, G., von Neumann, J.: The logic of quantum mechanics. Ann. Math. 37, 823 (1936)

    Article  Google Scholar 

  4. Bohm, A.: Quantum Mechanics: Foundations and Applications. Springer, New York (2001)

    Google Scholar 

  5. Bohr, N.: Causality and complementarity. Philos. Sci. 4, 289 (1937)

    Article  Google Scholar 

  6. Conway, J., Kochen, S.: The geometry of the quantum paradoxes. In: Bertlemann, R.A., Zeilinger, A. (eds.) Quantum [Un]speakables, p. 257. Springer, Berlin (2002)

    Chapter  Google Scholar 

  7. Conway, J., Kochen, S.: The strong free will theorem. Am. Math. Soc. Not. 56, 226 (2009)

    MATH  MathSciNet  Google Scholar 

  8. Faddeev, L.D., Yakubovskii, O.A.: Lectures on Quantum Mechanics for Mathematics Students. Am. Math. Soc, Providence, RI (2009)

  9. Feynman, R.P., Leighton, R.B., Sands, M.: The Feynman Lectures on Physics, vol. 3. Addison-Wesley, Reading, MA (1966)

    Google Scholar 

  10. Feynman, R.P.: Space-time approach to non-relativistic quantum mechanics. Rev. Mod. Phys. 20, 36 (1948)

    Article  ADS  MathSciNet  Google Scholar 

  11. Finkelstein, D.: The logic of quantum physics. Trans. N. Y. Acad. Sci. 25, 621 (1963)

    Article  MathSciNet  Google Scholar 

  12. Gleason, A.M.: Measures on the closed subspaces of a Hilbert space. J. Math. Mech. 6, 885 (1957)

    MATH  MathSciNet  Google Scholar 

  13. Jauch, J.M.: Foundations of Quantum Mechanics. Addison-Wesley, Reading, MA (1968)

    Book  MATH  Google Scholar 

  14. Kochen, S., Specker, E.P.: The problem of hidden variables in quantum mechanics. J. Math. Mech. 17, 59 (1967)

    MATH  MathSciNet  Google Scholar 

  15. Kochen, S., Specker, E.P.: Logical structures arising in quantum mechanics. In: Symposium at Berkeley, The Theory of Models, p. 177 (1965)

  16. Kochen, S., Specker, E.P.: The calculus of partial propositional functions. In: Congress at Jerusalem, Methodology and Philosophy of Science, p. 45 (1964)

  17. Koppelberg, S.: Handbook of Boolean Algebras, vol. 1. North-Holland, Amsterdam (1989)

    MATH  Google Scholar 

  18. Mackey, G.W.: Mathematical Foundations of Quantum Mechanics. Benjamin, Amsterdam (1963)

    MATH  Google Scholar 

  19. Piron, C.: Foundations of Quantum Physics. Benjamin, Reading, MA (1976)

    Book  MATH  Google Scholar 

  20. Reck, M., Zeilinger, A., Bernstein, H.J., Bertani, P.: Experimental realization of any discrete unitary operator. Phys. Rev. Lett. 73, 58 (1994)

    Article  ADS  Google Scholar 

  21. Uhlhorn, U.: Representation of symmetric transformations in quantum mechanics. Arkiv Fysik 23, 307 (1963)

    MATH  Google Scholar 

  22. Varadarajan, V.S.: The Geometry of Quantum Theory. Van Nostrand, Princeton, NJ (1968)

    Book  Google Scholar 

  23. Wrede, E.: Über die Ablenkung von Molekularstrahlen elektrischer Dipolmolekule iminhomogenen elektrischen Feld. Z. Phys. A 44, 261 (1927)

    Article  Google Scholar 

  24. Zukowski, M., Zeilinger, A., Horne, M.A.: Realizable higher-dimensional two-particle entanglements via multiport beam splitters. Phys. Rev. A 55, 2564 (1997)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by an award from the John Templeton Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Kochen.

Additional information

Dedicated to the memory of Ernst Specker.

Appendix: Summary Table of Concepts

Appendix: Summary Table of Concepts

 

General mechanics

Classical mechanics

Quantum mechanics

Properties

\(\sigma \)-Complex

\(\sigma \)-Algebra

\(\sigma \)-Complex

 

\(Q = \cup B\), with \(B\) a \(\sigma \)-algebra

\(B(\Omega )\)

\(Q(\mathcal {H}\}\)

States

\(p: Q\rightarrow [0,1]\)

\(p: B(\Omega )\rightarrow [0,1]\)

\(w: \mathcal {H}\rightarrow \mathcal {H}\)

 

\(p\mid B\), a probability measure

a probability measure

Density operator

  

\(p(x)=\mathrm{tr}(wx)\)

Pure states

Extreme point

1 dim operator

 

of convex set

\(\omega \in \Omega \)

i.e. unit \(\phi \in \mathcal {H}\)

  

\(p(x)=\left\langle x,x\phi \right\rangle \)

Observables

\(u: B(\mathbb {R})\rightarrow Q\)

\(f:\Omega \rightarrow \mathbb {R}\)

\(A: \mathcal {H}\rightarrow \mathcal {H}\)

 

homomorphism

Borel function

Hermitean operator

Symmetries

\(\sigma :Q \rightarrow Q\)

\(h:\Omega \rightarrow \Omega \)

\(u: \mathcal {H}\rightarrow \mathcal {H}\)

 

automorphism

canonical

unitary or

 

transformation

anti-unitary operator

 

\(\sigma (x)=uxu^{-1}\)

Dynamics

\(\sigma :\mathbb {R}\rightarrow \mathrm{Aut}(Q)\)

Liouville equation

von Neumann

 

representation

\(\partial _t \rho =-[H, \rho ]\)

–Liouville equation

  

\(\partial _t w_t=-\frac{i}{\hbar } [ H, w_t]\)

Conditionalized

\( p(x) \rightarrow p(x \mid y)\)

\(p(x) \rightarrow p(x \mid y)\)

\(w\rightarrow ywy / \mathrm{tr}(wy)\)

   states

for \(x,y\in B\) in \(Q\)

\(=p(x \wedge y)/p(y)\)

von Neumann

 

\(p(x \mid y)=p(x \mid y)/p(y)\)

 

–Lüders Rule

Combined

\(Q_1 \oplus Q_2\)

\(\Omega _1 \times \Omega _2\)

\(\mathcal {H}_1 \otimes \mathcal {H}_2\)

   systems

direct sum of

direct product of

tensor product of

 

\(\sigma \)-complexes

phase spaces

Hilbert spaces

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kochen, S. A Reconstruction of Quantum Mechanics. Found Phys 45, 557–590 (2015). https://doi.org/10.1007/s10701-015-9886-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-015-9886-5

Keywords

Navigation