Skip to main content
Log in

Complete Measurements of Quantum Observables

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

We define a complete measurement of a quantum observable (POVM) as a measurement of the maximally refined (rank-1) version of the POVM. Complete measurements give information on the multiplicities of the measurement outcomes and can be viewed as state preparation procedures. We show that any POVM can be measured completely by using sequential measurements or maximally refinable instruments. Moreover, the ancillary space of a complete measurement can be chosen to be minimal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. For example, the measurement of the position Q of a spinless particle is complete since the spectral measure of Q is of rank-1, but Q is not IC since one cannot reconstruct the state of the system from the position measurement statistics [13]. Conversely, an IC observable is not necessarily rank-1, i.e. complete, so that one cannot directly get information about the multiplicities of the measurement outcomes.

  2. On the one hand, for any self-adjoint operator S, there exists a unique real spectral measure M such that \(S=\int_{\mathbb{R}}x\,{\mathrm{d}}\mathsf {M}(x)\). On the other hand, any real spectral measure M defines a unique self-adjoint operator \(\int_{\mathbb{R}}x\,{\mathrm{d}}\mathsf {M}(x)\).

  3. A quantum channel is a unital normal completely positive linear map on \(\mathcal {L(H)}\).

  4. That is, for each i, operators A is , s=1,2,… , are linearly independent, i.e. the conditions ∑ s c s φ iks =0 for all k implies that the complex numbers c s are 0. (Hence, the rank r i is minimal.)

  5. If m(x)=0 then the sum \(\sum_{k=1}^{0}(\cdots )\) in (9) is interpreted to be 0 [9].

References

  1. Prugovec̆ki, E.: Information-theoretical aspects of quantum measurement. Int. J. Theor. Phys. 16, 321–331 (1977)

    Article  MathSciNet  Google Scholar 

  2. Busch, P., Lahti, P.J.: The determination of the past and the future of a physical system in quantum mechanics. Found. Phys. 19, 633–678 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  3. Flammia, S.T., Silberfarb, A., Caves, C.M.: Minimal informationally complete measurements for pure states. Found. Phys. 35, 1985–2006 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. Davies, E.B.: Quantum Theory of Open Systems. Academic Press, London (1976)

    MATH  Google Scholar 

  5. Busch, P., Lahti, P.J., Mittelstaedt, P.: The Quantum Theory of Measurement—Second Revised Edition. Springer, Berlin (1996)

    Google Scholar 

  6. Heinosaari, T., Ziman, M.: The Mathematical Language of Quantum Theory—From Uncertainty to Entanglement. Cambridge University Press, Cambridge (2012)

    MATH  Google Scholar 

  7. Holevo, A.S.: Probabilistic and Statistical Aspects of Quantum Theory. North-Holland, Amsterdam (1982)

    MATH  Google Scholar 

  8. Holevo, A.S.: Statistical Structure of Quantum Theory. Lecture Notes in Physics, vol. 67. Springer, Berlin (2001)

    MATH  Google Scholar 

  9. Pellonpää, J.-P.: Complete characterization of extreme quantum observables in infinite dimensions. J. Phys. A, Math. Theor. 44, 085304 (2011)

    Article  ADS  Google Scholar 

  10. Davies, E.B., Lewis, J.T.: An operational approach to quantum probability. Commun. Math. Phys. 17, 239–260 (1970)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. Ozawa, M.: Quantum measuring processes of continuous observables. J. Math. Phys. 25, 79–87 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  12. Pellonpää, J.-P.: Quantum instruments: I. Extreme instruments. J. Phys. A, Math. Theor. 46, 025302 (2013)

    Article  ADS  Google Scholar 

  13. Pellonpää, J.-P.: Quantum instruments: II. Measurement theory. J. Phys. A, Math. Theor. 46, 025303 (2013)

    Article  ADS  Google Scholar 

  14. Hytönen, T., Pellonpää, J.-P., Ylinen, K.: Positive sesquilinear form measures and generalized eigenvalue expansions. J. Math. Anal. Appl. 336, 1287–1304 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  15. Haapasalo, E., Heinosaari, T., Pellonpää, J.-P.: Quantum measurements on finite dimensional systems: relabeling and mixing. Quantum Inf. Process. 11, 1751–1763 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. Heinosaari, T., Wolf, M.M.: Non-disturbing quantum measurements. J. Math. Phys. 51, 092201 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  17. Heinosaari, T., Pellonpää, J.-P.: Generalized coherent states and extremal positive operator valued measures. J. Phys. A, Math. Theor. 45, 244019 (2012)

    Article  ADS  Google Scholar 

  18. Ozawa, M.: Concepts of conditional expectations in quantum theory. J. Math. Phys. 26, 1948–1955 (1985)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  19. Holevo, A.S.: Radon–Nikodym derivatives of quantum instruments. J. Math. Phys. 39, 1373–1387 (1998)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  20. Pellonpää, J.-P.: Complete quantum measurements break entanglement. Phys. Lett. A 376, 3495–3498 (2012)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the Academy of Finland grant No. 138135.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juha-Pekka Pellonpää.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pellonpää, JP. Complete Measurements of Quantum Observables. Found Phys 44, 71–90 (2014). https://doi.org/10.1007/s10701-013-9764-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-013-9764-y

Keywords

Navigation