Skip to main content
Log in

The determination of the past and the future of a physical system in quantum mechanics

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The determination of the past and the future of a physical system are complementary aims of measurements. An optimal determination of the past of a system can be achieved by an informationally complete set of physical quantities. Such a set is always strongly noncommutative. An optimal determination of the future of a physical system can be obtained by a Boolean complete set of quantities. The two aims can be reconciled to a reasonable degree with using unsharp measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Beltrametti, G. Cassinelli, and P. Lahti, “Unitary measurements of discrete quantities in quantum mechanics,”Rep. Ser.-Turku-FTL-R139 (1988).

  2. E. Beltrametti and G. Cassinelli,The Logic of Quantum Mechanics (Addison-Wesley, Reading, Massachusetts, 1981).

    Google Scholar 

  3. J. Jauch,Foundations of Quantum Mechanics (Addison-Wesley, New York, 1968).

    Google Scholar 

  4. N. Hadjisavvas, “Properties of mixtures of non-orthogonal states,”Lett. Math. Phys. 5, 327–332 (1981).

    Google Scholar 

  5. S. T. Ali and H. D. Doebner, “On the equivalence of nonrelativistic quantum mechanics based upon sharp and fuzzy measurements,”J. Math. Phys. 17, 1105–1111 (1976).

    Google Scholar 

  6. E. Prugovecki, “Information-theoretical aspects of quantum measurement,”Int. J. Theor. Phys. 16, 321–331 (1977).

    Google Scholar 

  7. P. Busch, “Unsharp reality and the question of quantum systems,” inSymposium on the Foundations of Modern Physics 1987, Lahti, P., and Mittelstaedt, P., eds. (World Scientific, Singapore, 1987), pp. 105–126.

    Google Scholar 

  8. E. B. Davies,Quantum Theory of Open Systems (Academic Press, London, 1976).

    Google Scholar 

  9. V. S. Varadarajan,Geometry of Quantum Theory (Springer, New York, 1985).

    Google Scholar 

  10. S. Pulmannova and A. Dvurecenskij, “Uncertainty principle and joint distribution of observables,”Ann. Inst. H. Poincaré A 42, 253–265 (1985).

    Google Scholar 

  11. B. van Fraassen, “Foundations of probability: a modal frequency interpretation,” inProblems in the Foundations of Physics, G. Toraldo di Francia, ed. (North-Holland, Amsterdam, 1979), pp. 344–394.

    Google Scholar 

  12. W. Salmon,The Foundations of Scientific Inference (University of Pittsburgh Press, Pittsburgh, 1966).

    Google Scholar 

  13. M. Ozawa, “Quantum measuring processes of continuous observables,”J. Math. Phys. 25, 79–87 (1984).

    Google Scholar 

  14. G. Cassinelli and P. Lahti, “On the measurement statistics interpretation of quantum mechanics: possible values and possible measurement results of physical quantities,”Found. Phys. 19 (1989), to appear.

  15. W. Pauli,General Principles of Wave Mechanics (Springer, Berlin, 1980); original German text in 1933.

    Google Scholar 

  16. B. Williams,Compton Scattering (McGraw-Hill, New York, 1977).

    Google Scholar 

  17. P. Lahti and K. Ylinen, “On total noncommutativity in quantum mechanics,”J. Math. Phys. 28, 2614–2617 (1987).

    Google Scholar 

  18. H. Reichenbach,Philosophic Foundations of Quantum Mechanics (University of California Press, Berkeley, 1944).

    Google Scholar 

  19. J. Corbett and C. Hurst, “Are wave functions uniquely determined by their position and momentum distributions?”J. Austral. Math. Soc. 20, 181–201 (1978).

    Google Scholar 

  20. C. F. von Weizsäcker, “Heisenberg's philosophy,” inSymposium on the Foundations of Modern Physics 1987, P. Lahti and P. Mittelstaedt, eds. (World Scientific, Singapore, 1987), pp. 277–296.

    Google Scholar 

  21. J. Klauder and B.-S. Skagerstam,Coherent States (World Scientific, Singapore, 1985).

    Google Scholar 

  22. W. Thirring,Quantum Mechanics of Atoms and Molecules (Springer, New York, 1981).

    Google Scholar 

  23. M. Grabowski, “A-entropy for generalized observables,”Int. J. Theor. Phys. 17, 635–642 (1978).

    Google Scholar 

  24. M. Pavicic, “Complex Gaussians and the Pauli non-uniqueness,”Phys. Lett. A 122, 280–282 (1987).

    Google Scholar 

  25. P. Busch and P. Lahti, “On various joint measurements of position and momentum observables in quantum theory,”Phys. Rev. D 29, 1634–1646 (1984).

    Google Scholar 

  26. P. Busch, “Indeterminacy relations and simultaneous measurements in quantum theory,”Int. J. Theor. Phys. 24, 63–92 (1985).

    Google Scholar 

  27. J. Klauder and J. McKenna, “Continuous-representation theory.” IV,J. Math. Phys. 5, 878–896 (1964).

    Google Scholar 

  28. R. Werner, “Quantum harmonic analysis in phase space,”J. Math. Phys. 25, 1404–1411 (1984).

    Google Scholar 

  29. P. Busch, T. Schonbek, and F. Schroeck, “Quantum observables: compatibility versus commutativity and maximal information,”J. Math. Phys. 28, 2866–2872 (1987).

    Google Scholar 

  30. P. Busch, “Unsharp reality and joint measurements of spin observables,”Phys. Rev. D 33, 2253–2261 (1986).

    Google Scholar 

  31. C. F. von Weizsäcker, “Komplementarität und Logik,” inZum Weltbild der Physik, C. F. von Weizsäcker, ed. (S. Hirzel-Verlag, Stuttgart, 1976), 12th edn., pp. 281–331 (1955).

    Google Scholar 

  32. P. Busch, “Some realizable joint measurements of complementary quantities,”Found. Phys. 17, 905–937 (1987).

    Google Scholar 

  33. C. Piron,Foundations of Quantum Theory (Benjamin, New York, 1976).

    Google Scholar 

  34. P. Mittelstaedt,Quantum Logic (Reidel, Dordrecht, Holland, 1978).

    Google Scholar 

  35. P. Mittelstaedt,Sprache und Realität in der Modernen Physik (B.I.-Wissenschaftsverlag, Mannheim, 1986).

    Google Scholar 

  36. P. Halmos,A Hilbert Space Problem Book (Springer, Berlin, 1982).

    Google Scholar 

  37. N. Dunford and J. Schwartz,Linear Operators, Parts 1 and 2 (Interscience, New York, 1958, 1963).

    Google Scholar 

  38. T. Kato,Perturbation Theory of Linear Operators (Springer, Berlin, 1966).

    Google Scholar 

  39. A. Lenard, “The numerical range of a pair of projections,”J. Funct. Anal. 10, 410–423 (1972).

    Google Scholar 

  40. P. Busch and P. Lahti, “To what extent do position and momentum commute?,”Phys. Lett. A 115, 259–264 (1986).

    Google Scholar 

  41. P. Lahti, “States of minimal uncertainty and maximal information for quantum position and momentum observables in quantum theory,”Rep. Math. Phys. 23, 289–297 (1986).

    Google Scholar 

  42. P. Busch and P. Lahti, “Minimal uncertainty and maximal information for quantum position and momentum,”J. Phys. A: Math. Gen. 20, 899–906 (1987).

    Google Scholar 

  43. J. Maczynski, “A compactness theorem in generalized probability theory,”Bull. Polon. Acad. Sci., Ser. Sci. Math. (in print).

  44. K. Ylinen, “Position and momentum as spectral measures on locally compact abelian groups,” inSymposium on the Foundations of Modern Physics 1987, P. Lahti and P. Mittelstaedt, eds. (World Scientific, Singapore, 1987), pp. 505–513.

    Google Scholar 

  45. P. Busch, “On joint lower bounds of position and momentum observables in quantum mechanics”,J. Math. Phys. 25, 1794–1797 (1984).

    Google Scholar 

  46. P. Busch and P. Lahti, “A note on quantum theory, complementarity, and uncertainty,”Phil. Sci. 52, 64–77 (1985).

    Google Scholar 

  47. P. Lahti, “Complementarity and uncertainty: some measurement-theoretical and information-theoretical aspects,” inSymposium on the Foundations of Modern Physics 1987, P. Lahti and P. Mittelstaedt, eds. (World Scientific, Singapore, 1987), pp. 181–208.

    Google Scholar 

  48. N. Bohr, “The quantum postulate and the recent development of atomic theory,”Nature 121, 580–590 (1928).

    Google Scholar 

  49. N. Bohr, “Quantum physics and philosophy—causality and complementarity,” inEssays 1958–1962 on Atomic Physics and Human Knowledge, Richard Clay, ed. (Bungay, Suffolk, 1963).

    Google Scholar 

  50. P. Mittelstaedt, “Language and reality in quantum physics,” inSymposium on the Foundations of Modern Physics 1987, P. Lahti and P. Mittelstaedt, eds. (World Scientific, Singapore, 1987), pp. 229–250.

    Google Scholar 

  51. P. Busch and P. Lahti, “Some remarks on unsharp quantum measurements, quantum non-demolition, and all that,”Ann. Physik (in print).

  52. P. Busch and F. Schroeck, “On the reality of spin and helicity,”Found. Phys. 19 (1989), to appear.

  53. A. Barchielli, L. Lanz, and G. Prosperi, “Statistics of continuous trajectories in quantum mechanics: operation-valued stochastic processes,”Found. Phys. 13, 779–812 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was partly supported by the Bundesministerium für Forschung und Technologie, Bonn, the Research Institute for Theoretical Physics, Helsinki, and the University of Turku Foundation, Turku.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Busch, P., Lahti, P.J. The determination of the past and the future of a physical system in quantum mechanics. Found Phys 19, 633–678 (1989). https://doi.org/10.1007/BF00731904

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00731904

Keywords

Navigation