Skip to main content
Log in

On the Consistency of the Consistent Histories Approach to Quantum Mechanics

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The Consistent Histories (CH) formalism aims at a quantum mechanical framework which could be applied even to the universe as a whole. CH stresses the importance of histories for quantum mechanics, as opposed to measurements, and maintains that a satisfactory formulation of quantum mechanics allows one to assign probabilities to alternative histories of a quantum system. It further proposes that each realm, that is, each set of histories to which probabilities can be assigned, provides a valid quantum-mechanical account, but that different realms can be mutually incompatible. Finally, some of its proponents offer an “evolutionary” explanation of our existence in the universe and of our preference for quasiclassical descriptions of nature. The present work questions the validity of claims offered by CH proponents asserting that it solves many interpretational problems in quantum mechanics. In particular, we point out that the interpretation of the framework leaves vague two crucial points, namely, whether realms are fixed or chosen and the link between measurements and histories. Our claim is that by doing so, CH overlooks the main interpretational problems of quantum mechanics. Furthermore, we challenge the evolutionary explanation offered and we critically examine the proposed notion of a realm-dependent reality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. It is important to note that DHI has not suffered significant changes along these 23 years, as can be appreciated from comparing its description in, e.g., [4] and [26].

  2. It is not clear if there exits just one quasiclassical realm. If more than one exists we should ask whether different IGUS of classes of IGUSes could possibly perceive different ones.

  3. Remember that information gathering and utilizing systems (IGUSes) play a fundamental role in DHI (see Sect. 3.2 and references therein).

  4. Recall that we already indicated that one cannot argue that the experimental set up is what determines the choice because then the issue would again be to specify under what conditions does the theory indicate that a set up counts as an experiment (see [29]).

  5. An instrumentalist with respect to quantum mechanics could object that this distinction does not make sense but proponents of CH must recognize it because it is central to the whole motivation for the approach.

  6. We thank an anonymous referee for raising this particular objection and for urging us to develop further our argument.

  7. Unlike DHI proponents, Griffiths unambiguously states that the adopts the first option above, [9].

References

  1. Griffiths, R.B.: J. Stat. Phys. 36, 219 (1984)

    Article  ADS  MATH  Google Scholar 

  2. Griffiths, R.B.: In: Fundamental Questions in Quantum Mechanics. Gordon & Breach, New York (1984)

    Google Scholar 

  3. Griffiths, R.B.: In: New Techniques and Ideas in Quantum Measurement Theory. New York Academy of Sciences, New York (1987)

    Google Scholar 

  4. Gell-Mann, M., Hartle, J.: In: Complexity, Entropy, and the Physics of Information. Addison-Wesley, Reading (1990)

    Google Scholar 

  5. Hartle, J.: In: Quantum Cosmology and Baby Universes. World Scientific, Singapore (1991)

    Google Scholar 

  6. Gell-Mann, M., Hartle, J.: Phys. Rev. D 47, 3345 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  7. Omnès, R.: Phys. Lett. A 125, 169 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  8. Omnès, R.: J. Stat. Phys. 53, 893 (1988)

    Article  ADS  MATH  Google Scholar 

  9. Griffiths, R.B.: Consistent Quantum Theory. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  10. Griffiths, R.B.: In: Compendium of Quantum Physics. Springer, Berlin (2009)

    Google Scholar 

  11. Hohenberg, P.C.: Rev. Mod. Phys. 82, 2835 (2010)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. Griffiths, R.B.: Am. J. Phys. 79, 954 (2011)

    Article  ADS  Google Scholar 

  13. Griffiths, R.B.: Stud. Hist. Philos. Mod. Phys. 44, 93 (2013)

    Article  Google Scholar 

  14. Gell-Mann, M., Hartle, J.: arXiv:gr-qc/9404013 (1994)

  15. Hartle, J.: In: Proceedings of the Lanczos International Centenary Conference (1994)

    Google Scholar 

  16. Hartle, J.: In: Boundaries and Barriers: On the Limits to Scientific Knowledge. Addison-Wesley, Reading (1996)

    Google Scholar 

  17. Hartle, J.: In: Proceedings of the 11th Nishinomiya-Yukawa Symposium. World Scientific, Singapore (1998)

    Google Scholar 

  18. Gell-Mann, M., Hartle, J.: In: Proceedings of the 4th Drexel Conference on Quantum Non-Integrability: The Quantum-Classical Correspondence (1998)

    Google Scholar 

  19. Griffiths, R.B., Hartle, J.: Phys. Rev. Lett. 81, 1981 (1998)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  20. Hartle, J.: Phys. Scr. T 76, 67 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  21. Hartle, J.: AIP Conf. Proc. 743, 298 (2005)

    Article  ADS  Google Scholar 

  22. Hartle, J.: J. Phys. A 40, 3101 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. Hartle, J.: Phys. Rev. A 76, 022104 (2007)

    Article  ADS  Google Scholar 

  24. Gell-Mann, M., Hartle, J.: Phys. Rev. A 76, 022104 (2007)

    Article  ADS  Google Scholar 

  25. Hartle, J.: Phys. Rev. A 78, 012108 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  26. Hartle, J.: Found. Phys. 41, 982 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  27. Gell-Mann, M., Hartle, J.: Phys. Rev. A 85, 062120 (2011)

    Article  ADS  Google Scholar 

  28. Hartle, J.: arXiv:1301.2844 [quant-ph] (2013)

  29. Okon, E., Sudarsky, D.: arXiv:1309.0792 [quant-ph] (2013)

  30. Hartle, J.: In: Directions in Relativity, vol. 2. Cambridge University Press, Cambridge (1993)

    Google Scholar 

  31. Kent, A.: Phys. Rev. Lett. 87, 15 (1997)

    MathSciNet  Google Scholar 

  32. Hartle, J.: In: Elementary Particles and the Universe. Cambridge University Press, Cambridge (1991)

    Google Scholar 

  33. Dowker, F., Kent, A.: J. Stat. Phys. 82, 1575 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  34. Barrett, J.: The Quantum Mechanics of Minds and Worlds. Oxford University Press, London (1999)

    Google Scholar 

  35. Kent, A.: In: Many Worlds? Everett, Quantum Theory and Reality. Oxford University Press, London (2010)

    Google Scholar 

  36. Sudarsky, D.: Int. J. Mod. Phys. D 20, 509 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  37. Barrett, J.: Philos. Sci. 63, 49 (1996)

    Article  MathSciNet  Google Scholar 

  38. Hartle, J.: Complexity 3, 22 (1997)

    Article  Google Scholar 

  39. Hartle, J.: In: The Future of Theoretical Physics and Cosmology. Cambridge University Press, Cambridge (2003)

    Google Scholar 

Download references

Acknowledgements

We wish to thank Robert Griffiths and James Hartle for very helpful e-mail discussions. We would also like to acknowledge partial financial support from DGAPA-UNAM projects IN107412 (DS), IA400312 (EO), and CONACyT project 101712 (DS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elias Okon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okon, E., Sudarsky, D. On the Consistency of the Consistent Histories Approach to Quantum Mechanics. Found Phys 44, 19–33 (2014). https://doi.org/10.1007/s10701-013-9760-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-013-9760-2

Keywords

Navigation