Skip to main content
Log in

On the consistent histories approach to quantum mechanics

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We review the consistent histories formulations of quantum mechanics developed by Griffiths, Omnès, and Gell-Mann and Hartle, and describe the classification of consistent sets. We illustrate some general features of consistent sets by a few simple lemmas and examples. We consider various interpretations of the formalism, and examine the new problems which arise in reconstructing the past and predicting the future. It is shown that Omnès' characterization of true statements—statements which can be deduced unconditionally in his interpretation—is incorrect. We examine critically Gell-Mann and Hartle's interpretation of the formalism, and in particular their discussions of communication, prediction, and retrodiction, and conclude that their explanation of the apparent persistence of quasiclassicality relies on assumptions about an as-yetunknown theory of experience. Our overall conclusion is that the consistent histories approach illustrates the need to supplement quantum mechanics by some selection principle in order to produce a fundamental theory capable of unconditional predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. B. Griffiths,J. Stat. Phys. 36:219 (1984).

    Google Scholar 

  2. R. B. Griffiths,Found. Phys. 23:1601 (1993).

    Google Scholar 

  3. R. Omnès,J. Stat. Phys. 53:893, 933, 957 (1988);57:357 (1989).

    Google Scholar 

  4. R. Omnès,Rev. Mod. Phys. 64:339 (1992).

    Google Scholar 

  5. M. Gell-Mann and J. B. Hartle, InComplexity, Entropy, and the Physics of Information, W. Zurek, ed. (Addison-Wesley, Reading, Massachusetts, 1990).

    Google Scholar 

  6. M. Gell-Mann and J. B. Hartle, InProceedings of the 3rd International Symposium on the Foundations of Quantum Mechanics in the Light of New Technology, S. Kobayashi, H. Ezawa, Y. Murayama, and S. Nomura, eds. (Physical Society of Japan, Tokyo, 1990).

    Google Scholar 

  7. M. Gell-Mann and J. B. Hartle, InProceedings of the 25th International Conference on High Energy Physics, Singapore, August 2–8, 1990, K. K. Phua and Y. Yamaguchi, eds. (South East Asia Theoretical Physics Association and Physical Society of Japan, distributed by World Scientific, Singapore, 1990).

    Google Scholar 

  8. M. Gell-Mann and J. B. Hartle, InProceedings of the NATO Workshop on the Physical Origins of Time Asymmetry, Mazagón, Spain, September 30-October 4, 1991, J. Halliwell, J. Pérez-Mercader, and W. Zurek, eds. (Cambridge University Press, Cambridge, 1994).

    Google Scholar 

  9. M. Gell-Mann and J. B. Hartle,Phys. Rev. D 47:3345 (1993).

    Google Scholar 

  10. F. Dowker and A. Kent,Phys. Rev. Lett. 75:3038 (1995).

    Google Scholar 

  11. B. DeWitt and R. N. Graham, eds.,The Many Worlds Interpretation of Quantum Mechanics (Princeton University Press, Princeton, New Jersey, 1973).

    Google Scholar 

  12. J. S. Bell, The measurement theory of Everett and de Broglie's pilot wave, inQuantum Mechanics, Determinism, Causality and Particles, M. Flato et al., eds. (Reidel, Dordrecht, 1976); reprinted in J. S. Bell,Speakable and Unspeakable in Quantum Mechanics (Cambridge University Press, Cambridge, 1987).

    Google Scholar 

  13. H. Stein,Noûs 18:635 (1984).

    Google Scholar 

  14. A. Kent,Int. J. Mod. Phys. A 5:1745 (1990).

    Google Scholar 

  15. J. S. Bell, Quantum mechanics for cosmologists, inQuantum Gravity 2, C. Isham, R. Penrose, and D. Sciama, eds. (Clarendon Press, Oxford, 1981), pp. 611–637.

    Google Scholar 

  16. J. B. Hartle, InQuantum Cosmology and Baby Universes, S. Coleman, J. Hartle, T. Piran, and S. Weinberg, eds. (World Scientific, Singapore, 1991).

    Google Scholar 

  17. B. d'Espagnat,J. Stat. Phys. 56:747 (1989).

    Google Scholar 

  18. W. Zurek,Prog. Theor. Phys. 89:281 (1993).

    Google Scholar 

  19. D. Dürr, S. Goldstein, and N. Zanghi,J. Stat. Phys. 67:843 (1992).

    Google Scholar 

  20. A. Albrecht,Phys. Rev. D 46: 5504 (1992);48:3768 (1993).

    Google Scholar 

  21. J. Paz and W. Zurek,Phys. Rev. D 48:2728 (1993).

    Google Scholar 

  22. D. Bohm,Phys. Rev. 85:166 (1952).

    Google Scholar 

  23. T. M. Samols, A stochastic model of a quantum field theory, Cambridge preprint DAMTP/94-39;J. Stat. Phys. to appear.

  24. J. Cushing, A. Fine, and S. Goldstein, eds.,Bohmian Mechanics and Quantum Theory: An Appraisal (Kluwer, Dordrecht, to be published).

  25. Y. Aharonov, P. Bergmann, and J. Lebovitz,Phys. Rev. B 134:1410 (1964).

    Google Scholar 

  26. J. B. Hartle,Phys. Rev. D 44:3173 (1991).

    Google Scholar 

  27. C. J. Isham, InIntegrable Systems, Quantum Groups and Quantum Field Theories, L. A. Ibort and M. A. Rodriguez (eds.) (Kluwer, London 1993); C. J. Isham,J. Math. Phys.23:2157 (1994); C. J. Isham and N. Linden,J. Math. Phys. 35:5452 (1994).

    Google Scholar 

  28. M. Gell-Mann and J. B. Hartle, Equivalent sets of histories and multiple quasiclassical domains, Preprint UCSBTH-94-09, gr-qc/9404013, submitted to gr-qc 8 April 1994.

  29. S. Goldstein and D. Page,Phys. Rev. Lett. 74:3715 (1995).

    Google Scholar 

  30. J. S. Bell,Physics 1:195 (1964);Rev. Mod. Phys. 38:447 (1966).

    Google Scholar 

  31. D. Bohm,Quantum Theory (Prentice-Hall, Englewood Cliffs, New Jersey, 1951), Chapter 22.

    Google Scholar 

  32. E. Joos and H. D. Zeh,Z. Phys. B. 59:2 (1985).

    Google Scholar 

  33. W. Zurek,Phys. Rev. D 24:1516 (1981);26:1862 (1982).

    Google Scholar 

  34. A. Caldeira and A. Leggett,Physica 121A:587 (1983).

    Google Scholar 

  35. J. McElwaine, Approximate and exact consistency of histories, University of Cambridge preprint DAMTP/95-32, grant-ph/9506034, Submitted toPhys. Rev. A.

  36. P. H. Gosse,Omphalos: An Attempt to Untie the Geological Knot (1857).

  37. R. Omnès, Private communication.

  38. R. Griffiths, Private communication.

  39. S. Saunders, The quantum block universe, Harvard Department of Philosophy preprint (1992); Decoherence, relative states, and evolutionary adaptation, Harvard Department of Philosophy preprint (1993).

  40. H. Everett,Rev. Mod. Phys. 29:454 (1957).

    Google Scholar 

  41. M. Gell-Mann and J. B. Hartle, Equivalent sets of histories and multiple quasiclassical domains, preprint UCSBTH-94-09, revised version as of 26 April 1995.

  42. M. Gell-Mann,The Quark and the Jaguar (Little, Brown and Co., London, 1994).

    Google Scholar 

  43. J. B. Hartle, Private communication.

  44. A. Whitaker,Einstein, Bohr and the quantum world, to be published.

  45. J. von Neumann,Mathematical Foundations of Quantum Mechanics (Princeton University Press, Princeton, New Jersey, 1955).

    Google Scholar 

  46. E. P. Wigner, Remarks on the mind-body question, inThe Scientist Speculates, I. J. Good ed. (Heinemann, London, 1961). pp. 284–302.

    Google Scholar 

  47. R. Penrose, The nature of space and time, Isaac Newton Institute debate with S. W. Hawking (May 1994).

  48. D. Page,Phys. Rev. Lett. 70:4034 (1993).

    Google Scholar 

  49. S. Goldstein, Private communication.

  50. R. D. Sorkin, Quantum mechanics as quantum measure theory, Syracuse preprint SU-GP-93-12-1, gr-qc/9401003.

  51. G. Ghirardi, A. Rimini, and T. Weber,Phys. Rev. D 34:470 (1986).

    Google Scholar 

  52. R. Omnès,Phys. Lett. A 187:26 (1994).

    Google Scholar 

  53. N. Gisin,Helv. Phys. Act. 62:363 (1989).

    Google Scholar 

  54. I. Percival,Proc. Roy. Soc. Lond. Ser. A 447:189 (1994).

    Google Scholar 

  55. R. Penrose,Shadows of the Mind (Oxford University Press, Oxford, 1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dowker, F., Kent, A. On the consistent histories approach to quantum mechanics. J Stat Phys 82, 1575–1646 (1996). https://doi.org/10.1007/BF02183396

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02183396

Key Words

Navigation