Skip to main content
Log in

Quantum Tunneling Time: Relativistic Extensions

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Several years ago, in quantum mechanics, Davies proposed a method to calculate particle’s traveling time with the phase difference of wave function. The method is convenient for calculating the sojourn time inside a potential step and the tunneling time through a potential hill. We extend Davies’ non-relativistic calculation to relativistic quantum mechanics, with and without particle-antiparticle creation, using Klein–Gordon equation and Dirac Equation, for different forms of energy-momentum relation. The extension is successful only when the particle and antiparticle creation/annihilation effect is negligible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Binnig, G., Rohrer, H.: IBM J. Res. Dev. 30, 355 (1986)

    Google Scholar 

  2. Parikh, M.K., Wilczek, F.: Phys. Rev. Lett. 85, 5042 (2000). arXiv:hep-th/9907001

    Article  MathSciNet  ADS  Google Scholar 

  3. Peres, A.: Am. J. Phys. 48, 552 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  4. Davies, P.C.W.: Am. J. Phys. 73, 23 (2005). arXiv:quant-ph/0403010

    Article  ADS  Google Scholar 

  5. Klein, O.: Z. Phys. 53, 157 (1929)

    Article  ADS  MATH  Google Scholar 

  6. Dombey, N., Calogeracos, A.: Phys. Rep. 315, 41 (1999)

    Article  ADS  Google Scholar 

  7. Calogeracos, A., Dombey, N.: Contemp. Phys. 40, 313 (1999). arXiv:quant-ph/9905076

    Article  ADS  Google Scholar 

  8. Alhaidari, A.D.: Phys. Scr. 83, 025001 (2011). arXiv:0907.5588 [quant-ph]

    Article  ADS  Google Scholar 

  9. Ni, X., Huang, L., Ying, L., Lai, Y.-C.: Phys. Rev. B 87, 224304 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgement

We are grateful to the referees for valuable comments. This work is supported by the National Natural Science Foundation of China (Grant No. 11105053), and partially by the Open Research Foundation of Shanghai Key Laboratory of Particle Physics and Cosmology (Grant No. 11DZ2230700).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Towe Wang.

Appendix: Derivation of Expression (39)

Appendix: Derivation of Expression (39)

Using the continuity conditions of the wave function (37) at x=0 and x=a, we can derive

$$\begin{aligned} D &= \frac{-4iMNe^{-ika}}{(N-iM)^2e^{pa}-(N+iM)^2e^{-pa}} \\ &= \frac{-4MN[-2MN(e^{pa}+e^{-pa})+i(N^2-M^2)(e^{pa}-e^{-pa})]e^{-ika}}{|(N^2-M^2)(e^{pa}-e^{-pa})-2iMN(e{pa}+e^{-pa})|^{2}}. \end{aligned}$$
(A.1)

For notational simplicity we have defined M=k/p, N=(Em)/(EVm). Making use of this result and following the same logic in Sect. 3.2, one can prove that the phase change is

$$ \delta(E)=\arctan \biggl[\frac{M^2-N^2}{2MN}\tanh(pa) \biggr]. $$
(A.2)

Consequently, the tunneling time is found to be

$$ T=\frac{ (\frac{M^2-N^2}{2MN} )'\tanh(pa)+\frac{M^2-N^2}{2MN}[\tanh(pa)]'}{1+ (\frac{M^2-N^2}{2MN} )^2\tanh^2(pa)}. $$
(A.3)

Note that

$$\begin{aligned} \begin{aligned} \frac{1}{1+ (\frac{M^2-N^2}{2MN} )^2\tanh^2(pa)}&=\frac{4M^2N^2\cosh^2(pa)}{\cosh^2(pa)(M^2+N^2)^2-(M^2-N^2)^2}, \\ \biggl(\frac{M^2-N^2}{2MN} \biggr)'&=\frac{M^2+N^2}{2M^2N^2}\times \frac{m(E-m)(p^2+k^2)}{p^3k(m+V-E)}, \\ \bigl[\tanh(pa) \bigr]' &= \frac{a(V-E)}{p\cosh^2(pa)}, \end{aligned} \end{aligned}$$
(A.4)

we can rewrite (A.3) as

$$\begin{aligned} T =& \frac{2}{\cosh^2(pa)(M^2+N^2)^2-(M^2-N^2)^2} \\ &{} \times \biggl[\frac{(M^2+N^2)(p^2+k^2)(E-m)m\sinh(2pa)}{2p^3k(m+V-E)}+MN\bigl(M^2-N^2 \bigr)\frac{a(V-E)}{p} \biggr] \\ =&\bigl\{2(E-m) (m+V-E)\bigr\} \bigl\{\cosh^2(pa) \bigl[k^2(E-V-m)^2+p^2(E-m)^2 \bigr]^2 \\ &{}-\bigl[k^2(E-V-m)^2-p^2(E-m)^2 \bigr]^2\bigr\}^{-1} \\ &{} \times \biggl\{\frac{\sinh(2pa)}{2pk}\bigl[k^2(E-V-m)^2+p^2(E-m)^2 \bigr]\bigl(p^2+k^2\bigr) \\ &{}+ka(E-V)\bigl[k^2(E-V-m)^2-p^2(E-m)^2 \bigr] \biggr\}. \end{aligned}$$
(A.5)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, DY., Wang, T. & Xue, X. Quantum Tunneling Time: Relativistic Extensions. Found Phys 43, 1257–1274 (2013). https://doi.org/10.1007/s10701-013-9744-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-013-9744-2

Keywords

Navigation