Skip to main content
Log in

On Times and Speeds of Time-Dependent Quantum and Electromagnetic Tunneling

  • ATOMS, MOLECULES, OPTICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

This is a review of studies of quantum tunneling, which is described by the one-dimensional Schrödinger equation, and electromagnetic tunneling, where “superluminal” velocities and times of tunneling are considered. Integral and integrodifferential equations have been presented to describe tunneling. According to these equations, superluminal motion is impossible. The paradoxical Hartman effect has been discussed and explained. It has been shown that the velocity of passage of a particle in a beam through a barrier in the case of steady-state and time-dependent quantum tunneling is equal to the velocity of its incidence on the barrier and quasiphotons inside any layer of matter carry the energy always at a subluminal velocity. However, the tunneling time of a single particle or a photon is meaningless.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. L. A. Vainshtein, Sov. Phys. Usp. 19, 189 (1976).

    Article  ADS  Google Scholar 

  2. L. A. Vainshtein and D. E. Vakman, Frequency Separation in the Theory of Oscillations and Waves (Nauka, Moscow, 1983) [in Russian].

    Google Scholar 

  3. J. Koenig, H. Schoeller, and G. Schon, Phys. Usp. 41, 159 (1998).

    Article  ADS  Google Scholar 

  4. A. A. Abrikosov, Phys. Usp. 41, 605 (1998).

    Article  ADS  Google Scholar 

  5. V. N. Murzin and Yu. A. Mityagin, Phys. Usp. 42, 396 (1999).

    Article  ADS  Google Scholar 

  6. E. S. Soldatov, A. S. Trifonov, V. V. Khanin, S. P. Gubin, S. A. Yakovenko, and G. B. Khomutov, Phys. Usp. 39, 841 (1996).

    Article  ADS  Google Scholar 

  7. P. I. Arseev, V. N. Mantsevich, N. S. Maslova, and V. I. Panov, Phys. Usp. 60, 1067 (2017).

    Article  ADS  Google Scholar 

  8. M. V. Davidovich and R. K. Yafarov, Tech. Phys. 64, 1210 (2019).

    Article  Google Scholar 

  9. M. Ya. Azbel’, Phys. Usp. 41, 543 (1998).

    Article  ADS  Google Scholar 

  10. A. B. Shvartsburg and N. S. Erokhin, Phys. Usp. 54, 1171 (2011).

    Article  ADS  Google Scholar 

  11. A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao, Phys. Rev. Lett. 71, 708 (1993).

    Article  ADS  Google Scholar 

  12. R. Y. Chiao, P. G. Kwiat, and A. M. Steinberg, arXiv:quant-ph/9501016v1 (1995).

  13. A. M. Steinberg, Phys. Rev. A 52, 32 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  14. F. T. Smith, Phys. Rev. 118, 1349 (1960).

    Article  ADS  Google Scholar 

  15. T. E. Hartman, J. Appl. Phys. 33, 3427 (1962).

    Article  ADS  Google Scholar 

  16. J. R. Fletcher, J. Phys. 18, L55 (1985).

    ADS  Google Scholar 

  17. M. Buttiker and R. Landauer, Phys. Rev. Lett. 49, 1739 (1982).

    Article  ADS  Google Scholar 

  18. M. Jonson, in Quantum Transport in Semiconductors, Ed. by D. K. Ferry and C. Jacoboni, Physics of Solids and Liquids (Springer, Boston, MA, 1992), p. 193.

  19. L. A. Khalfin, Phys. Usp. 39, 639 (1996).

    Article  ADS  Google Scholar 

  20. E. H. Hauge and J. A. Støvneng, Rev. Mod. Phys. 61, 917 (1989).

    Article  ADS  Google Scholar 

  21. V. S. Olkhovsky and E. Recami, Phys. Rep. 214, 339 (1992); arXiv: cond-mat/9802162 (1998).

  22. C. A. A. de Carvalho and H. M. Nussenzveig, Phys. Rep. 364, 83 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  23. H. Winful, Phys. Rev. Lett. 91, 260401 (2003).

    Article  ADS  Google Scholar 

  24. H. G. Winful, Phys. Rep. 436, 1 (2006).

    Article  ADS  Google Scholar 

  25. H. G. Winful, New J. Phys. 8, 1 (2006).

    Article  MathSciNet  Google Scholar 

  26. A. B. Shvartsburg, Phys. Usp. 50, 37 (2007).

    Article  ADS  Google Scholar 

  27. M. V. Davidovich, Phys. Usp. 52, 415 (2009).

    Article  ADS  Google Scholar 

  28. V. S. Olkhovsky, Phys. Usp. 54, 829 (2011).

    Article  ADS  Google Scholar 

  29. E. E. Kolomeitsev and D. N. Voskresensky, J. Phys. G: Nucl. Part. Phys. 40, 113101 (2013).

    Article  ADS  Google Scholar 

  30. V. S. Olkhovsky, Phys. Usp. 57, 1136 (2014).

    Article  ADS  Google Scholar 

  31. M. Büttiker, in Electronic Properties of Multilayers and Low Dimensional Semiconductor Structures, Ed. by J. M. Chamberlain, L. Eaves, and J. C. Portal (Plenum, New York, 1990), p. 297.

    Google Scholar 

  32. N. Yamada, Phys. Rev. Lett. 93, 170401 (2004).

    Article  ADS  Google Scholar 

  33. Y. Ban, E. Ya. Sherman, J. G. Muga, and M. Büttiker, Phys. Rev. A 82, 062121 (2010).

    Article  ADS  Google Scholar 

  34. P. Hraskó, Found. Phys. 33, 1009 (2003).

    Article  Google Scholar 

  35. N. Yamada, Phys. Rev. Lett. 83, 3350 (1999).

    Article  ADS  Google Scholar 

  36. J. G. Muga and C. R. Leavens, Phys. Rep. 338, 353 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  37. L. A. MacColl, Phys. Rev. 40, 621 (1932).

    Article  ADS  Google Scholar 

  38. M. W. Mitchell and R. Y. Chiao, Am. J. Phys. 66, 14 (1998).

    Article  ADS  Google Scholar 

  39. N. Borjemscaia, S. V. Polyakov, P. D. Lett, and A. Migdall, Opt. Express 18, 2279 (2010).

    Article  ADS  Google Scholar 

  40. J. G. Muga and J. P. Palao, Ann. Phys. (Leipzig) 7, 671 (1998).

    Article  ADS  Google Scholar 

  41. J. G. Muga, I. L. Egusquiza, J. A. Damborenea, and F. Delgado, Phys. Rev. A 66, 042115 (2002).

    Article  ADS  Google Scholar 

  42. X. Chen and C.-F. Li, J. Opt. A: Pure Appl. Opt. 11, 085004 (2009).

    Article  ADS  Google Scholar 

  43. A. Dogariu, A. Kuzmich, and L. H. Wang, Phys. Rev. A 63, 053806 (2001).

    Article  ADS  Google Scholar 

  44. M. V. Davidovich, J. V. Stephuk, and P. A. Shilovski, Tech. Phys. 57, 320 (2012).

    Article  Google Scholar 

  45. Ya. I. Khurgin and V. P. Yakovlev, Limited Functions in Physics and Technology (Nauka, Moscow, 1971) [in Russian].

    MATH  Google Scholar 

  46. Ya. I. Khurgin and V. P. Yakovlev, Methods of the Theory of Entire Functions in Radiophysics, Communication Theory and Optics (Fizmatgiz, Moscow, 1962) [in Russian].

    Google Scholar 

  47. A. I. Baz’, Ya. B. Zel’dovich, and A. M. Perelomov, Scattering, Reactions and Decays in Nonrelativistic Quantum Mechanics (Nauka, Moscow, 1971, 2nd ed.; Israel Program for Scientific Translations, Jerusalem, 1966).

  48. A. Alú, M. G. Silveirinha, A. Salandrino, and N. Engheta, Phys. Rev. 75, 155410 (2007).

    Article  Google Scholar 

  49. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 8: Electrodynamics of Continuous Media (Nauka, Moscow, 1982; Pergamon, New York, 1984).

  50. L. Felsen and N. Marcuvitz, Radiation and Scattering of Waves, Vol. 31 of IEEE Press Series on Electromagnetic Wave Theory (Wiley-IEEE, New York, 1994).

  51. M. V. Davidovich, The Laws of Conservation and Density of Energy and Momentum of the Electromagnetic Field in a Dispersive Medium (Sarat. univ., Saratov, 2012) [in Russian].

  52. M. V. Davidovich, Tech. Phys. Lett. 32 (22), 982 (2006).

    Article  ADS  Google Scholar 

  53. M. V. Davidovich, Tech. Phys. 55 (5), 630 (2010).

    Article  Google Scholar 

  54. M. V. Davidovich, Phys. Usp. 53, 595 (2010).

    Article  ADS  Google Scholar 

  55. S. M. Rytov, Zh. Eksp. Teor. Fiz. 17, 930 (1947).

    Google Scholar 

  56. M. V. Davidovich, Quantum Electron. 47, 567 (2017).

    Article  ADS  Google Scholar 

  57. V. N. Gribov, Quantum Electrodynamics (Regulyar. Khaotich. Dinamika, Moscow, Izhevsk, 2001) [in Russian].

    Google Scholar 

  58. M. V. Davidovich, J. Commun. Technol. Electron. 55, 465 (2010).

    Article  Google Scholar 

  59. E. Yu. Al’tshuler, M. V. Davidovich, and Yu. V. Stefyuk, J. Commun. Technol. Electron. 55, 98 (2010).

    Article  Google Scholar 

  60. M. V. Davidovich and Yu. V. Stefyuk, Izv. Vyssh. Uchebn. Zaved., Prikl. Nelin. Dinam. 18 (3), 160 (2010).

    Google Scholar 

  61. A. Enders and G. Nimtz, Phys. Rev. B 47, 9605 (1993).

    Article  ADS  Google Scholar 

  62. M. V. Davidovich, J. Commun. Technol. Electron. 46, 1185 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Davidovich.

Additional information

Translated by R. Tyapaev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davidovich, M.V. On Times and Speeds of Time-Dependent Quantum and Electromagnetic Tunneling. J. Exp. Theor. Phys. 130, 35–51 (2020). https://doi.org/10.1134/S1063776119120161

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776119120161

Navigation