Skip to main content
Log in

A Spatially-VSL Gravity Model with 1-PN Limit of GRT

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

In the static field configuration, a spatially-Variable Speed of Light (VSL) scalar gravity model with Lorentz-Poincaré interpretation was shown to reproduce the phenomenology implied by the Schwarzschild metric. In the present development, we effectively cover configurations with source kinematics due to an induced sweep velocity field w. The scalar-vector model now provides a Hamiltonian description for particles and photons in full accordance with the first Post-Newtonian (1-PN) approximation of General Relativity Theory (GRT). This result requires the validity of Poincaré’s Principle of Relativity, i.e. the unobservability of ‘preferred’ frame movement. Poincaré’s principle fixes the amplitude of the sweep velocity field of the moving source, or equivalently the ‘vector potential’ ξ of GRT (e.g.; S. Weinberg, Gravitation and cosmology, [1972]), and provides the correct 1-PN limit of GRT. The implementation of this principle requires acceleration transformations derived from gravitationally modified Lorentz transformations. A comparison with the acceleration transformation in GRT is done. The present scope of the model is limited to weak-field gravitation without retardation and with gravitating test particles. In conclusion the model’s merits in terms of a simpler space, time and gravitation ontology—in terms of a Lorentz-Poincaré-type interpretation—are explained (e.g. for ‘frame dragging’, ‘harmonic coordinate condition’).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abraham, M.: Zur Theorie der Gravitation. Z. Phys. 13, 1 (1912)

    Google Scholar 

  2. Abraham, M.: Das Elementargesetz der Gravitation. Z. Phys. 13, 4 (1912)

    MathSciNet  Google Scholar 

  3. Abraham, M.: Der freie Fall. Z. Phys. 13, 310 (1912)

    MathSciNet  Google Scholar 

  4. Abraham, M.: Die Erhaltung der Energie und der Materie im Schwerkraftfelde. Z. Phys. 13, 311 (1912)

    MathSciNet  Google Scholar 

  5. Abraham, M.: Das Gravitationsfeld. Z. Phys. 13, 793 (1912)

    MathSciNet  Google Scholar 

  6. Abraham, M.: Eine neue Gravitationstheorie. Arch. Math. Phys. 3, 193 (1912)

    Google Scholar 

  7. Abraham, M.: Nochmals Relativität und Gravitation. Bemerkungen zu A. Einsteins Erwiderung. Ann. Phys. (Leipzig) 38, 444, 1056 (1912)

    ADS  Google Scholar 

  8. Abraham, M.: Relativität und Gravitation. Erwiderung auf eine Bemerkung des Hrn A. Einstein. Ann. Phys. (Leipzig) 38, 1056 (1912)

    ADS  Google Scholar 

  9. Albrecht, A., Magueijo, J.: A time varying speed of light as a solution to cosmological puzzles. Phys. Rev. D 59, 043516 (1999)

    Article  ADS  Google Scholar 

  10. Arminjon, M.: Post-Newtonian approximation of a scalar theory of gravitation and application to light rays. Rev. Roum. Sci. Techn. Méc. Appl. 43, 135 (1998)

    Google Scholar 

  11. Arminjon, M.: Ether theory of gravitation: why and how? In: Duffy, M.C., Kostro, L. (eds.) Relativistic World Ether (to be published). Arxiv ref.: gr-qc/0401021

  12. Barcelo, C., Liberati, S., Visser, M.: Analogue gravity. Arxiv ref.: gr-qc/0505065

  13. Belinfante, F.J., Swihart, J.C.: Phenomenological linear theory of gravitation. Part I. Ann. Phys. (N.Y.) 1, 168 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  14. Bell, J.S.: Speakable and Unspeakable in Quantum Mechanics. Cambridge University Press, Cambridge (1987)

    Google Scholar 

  15. Bini, D., Carini, P., Jantzen, R.T.: Relative observer kinematics in general relativity. Class. Quantum Gravity 12, 2549–2563 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Brans, C., Dicke, R.H.: Mach’s principle and relativistic theory of gravitation. Phys. Rev. 124, 925 (1961)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Broekaert, J.: Verification of the ‘essential’ GRT experiments in a scalar Lorentz-covariant gravitation. In: Duffy, M.C. (ed.) PIRT VIII Proceedings, vol. 1, pp. 37–54. PD Publications, Liverpool (2002)

    Google Scholar 

  18. Broekaert, J.: On a modified-Lorentz-transformation based gravity model confirming basic GRT experiments. Found. Phys. 35(5), 839–864 (2005). Arxiv ref.: gr-qc/0309023

    Article  ADS  MATH  Google Scholar 

  19. Broekaert, J.: A Lorentz-Poincaré type interpretation of the weak equivalence principle. Int. J. Theor. Phys. 46, 1722–1737 (2007). Arxiv ref.: gr-qc/0604107

    Article  MathSciNet  MATH  Google Scholar 

  20. Brown, H.R.: Physical Relativity, Space-Time Structure from a Dynamical Perspective. Oxford University Press, Oxford (2005)

    MATH  Google Scholar 

  21. Bunchaft, F., Carneiro, S.: The static spacetime relative acceleration for the general free fall and its possible experimental test. Class. Quantum Gravity 15, 1557 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Capella, A.: Nuovo Cimento B 42, 321 (1966)

    Article  MathSciNet  ADS  Google Scholar 

  23. Carnap, R.: Philosophical Foundations of Physics. An Introduction to the Philosophy of Science. Basic Books, New York (1966)

    Google Scholar 

  24. Cavalleri, G., Spinelli, G.: Energy momentum tensor: Field-theoretic approach for coupled gravitational and electromagnetic fields. Phys. Rev. D 12, 2200 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  25. Cavalleri, G., Spinelli, G.: Gravitation field theory in flat space (in the presence of an electromagnetic field) with the most general stress tensor: Equivalence with Einstein’s theory. Phys. Rev. D 12, 2203 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  26. Cavalleri, G., Spinelli, G.: Field-theoretic approach to gravity in flat space-time. Riv. Nuovo Cimento 3, 8 (1980)

    Google Scholar 

  27. Cavalleri, G., Spinelli, G.: Tensorial rank of gravitational theories in flat space-time. Nuovo Cimento B 75, 50–56 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  28. Cavalleri, G., Tonni, E.: A new cosmological theory based on a new conception of the ether. Relative motion and origin of special relativity. Hadron. J. 20, 173 (1997)

    MATH  Google Scholar 

  29. Coleman, C.J.: A simple relativistic theory of gravitation. J. Phys. A: Math. Gen. 4, 611–616 (1971)

    Article  ADS  Google Scholar 

  30. Deser, S.: Self-interaction and gauge invariance. Gen. Relativ. Gravit. 1, 9 (1970)

    Article  ADS  MathSciNet  Google Scholar 

  31. Deser, S., Laurent, B.E.: Gravitation without self-interaction. Ann. Phys (N.Y.) 50, 76 (1968)

    Article  ADS  Google Scholar 

  32. Dicke, R.H.: Gravitation without a principle of equivalence. Rev. Mod. Phys. 29, 363–376 (1957)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Duhem, P.: The Aim and Structure of Physical Theory. Princeton UP, New Jersey (1954/1906)

    MATH  Google Scholar 

  34. Eddington, A.S.: The Mathematical Theory of Relativity. Cambridge University Press, Cambridge (1957/1923)

    Google Scholar 

  35. Eddington, A.S.: Space, Time and Gravitation: An Outline of the General Relativity Theory. Cambridge Science Classics. Cambridge University Press, Cambridge (1987/1920)

    MATH  Google Scholar 

  36. Einstein, A.: Über das Relativitätsprinzip und die aus demselben gezogenen Folgerungen. Jahrb. Radioakt. Elektron. 4, 411–462 (1907)

    Google Scholar 

  37. Einstein, A.: Berichtigungen zu der Arbeit: “Über das Relativitätsprinzip und die aus demselben gezogenen Folgerungen”. Jahrb. Radioakt. Elektron. V, 98 (1908)

    ADS  Google Scholar 

  38. Einstein, A.: Über den Einfluss der Schwerkraft auf die Ausbreitung des Lichtes. Ann. Phys. 35, 898–908 (1911)

    Article  Google Scholar 

  39. Einstein, A.: Lichtgeschwindigkeit und statik des Gravitationsfeldes. Ann. Phys. (Leipzig) 38, 355 (1912)

    ADS  Google Scholar 

  40. Einstein, A.: Zur Theorie des statischen Gravitationsfeldes. Ann. Phys. (Leipzig) 38, 443 (1912)

    ADS  Google Scholar 

  41. Einstein, A.: Relativität und Gravitation. Erwiderung auf eine Bemerkung von M. Abraham. Ann. Phys. (Leipzig) 38, 1059 (1912)

    ADS  Google Scholar 

  42. Einstein, A.: Bemerkung zu Abrahams Vorangehender Auseinandersetzung “Nochmals Relativität und Gravitation”. Ann. Phys. (Leipzig) 39, 704 (1912)

    ADS  Google Scholar 

  43. Einstein, A.: Geometry and experience. In: Sidelights on Relativity, pp. 20–46. Dover, New York (1983/1921)

    Google Scholar 

  44. Evans, J.C., et al.: Matter waves in a gravitational field: an index of refraction for massive particles in general relativity. Am. J. Phys. 69, 1103 (2001)

    Article  ADS  Google Scholar 

  45. Fierz, M.: Über die relativistische Theorie kräfterfreier Teilchen mit beliebigem Spin. Helv. Phys. Act. 12, 3 (1939)

    Article  Google Scholar 

  46. Grünbaum, A.: The Philosophical Problems of Space and Time. Boston Studies, vol. XII. Reidel, Dordrecht (1973)

    Google Scholar 

  47. Gupta, I.: Einstein’s and other theories of gravitation. Rev. Mod. Phys. 29, 334 (1957)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Ivert, P.-A., Sjödin, T.: Poincare’s principle determines the behaviour of moving particles and clocks. Acta Phys. Acad. Sci. Hung. 48, 439–448 (1980)

    Article  Google Scholar 

  49. Kenyon, I.R.: General Relativity. Oxford University Press, Oxford (1990)

    Google Scholar 

  50. Keswani, G.H.: Origin and concept of relativity (i). Br. J. Philos. Sci. 15, 286–306 (1964)

    Google Scholar 

  51. Lederer, S., Tonnelat, M.A.: Identities and laws of motion deduced from a Lagrangian. Application to the definition of energy-momentum in a Euclidean theory of gravitation. Nuovo Cimento 34, 883 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  52. Lense, J., Thirring, H.: Über den Einfluss der Eigenrotation der Zentral körper auf die Bewegung der Planeten und Monde nach der Einsteinschen Gravitationstheorie. Phys. Z. 19, 156 (1918)

    Google Scholar 

  53. Lightman, A.P., Lee, D.L.: New two-metric theory of gravity with prior geometry. Phys. Rev. D 8, 3293–3301 (1973)

    Article  ADS  Google Scholar 

  54. Longair, M.: Theoretical Concepts in Physics: An Alternative View of Theoretical Reasoning in Physics, 2nd edn. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  55. Lorentz, H.A.: Considérations sur la pesanteur. In: Collected Papers, vol. 5, p. 198. Nijhof, The Hague (1937)

    Google Scholar 

  56. Lynden-Bell, D., Bicak, J., Katz, J.: On accelerated inertial frames in gravity and electromagnetism. Ann. Phys. 271, 1–22 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. Magueijo, J.: New varying speed of light theories. Rep. Prog. Phys. 66, 2025 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  58. Mansouri, R., Sexl, R.U.: A test theory of special relativity: I. Simultaneity and clock synchronization. Gen. Relativ. Gravit. 8, 497–515, 809 (1977)

    Article  ADS  Google Scholar 

  59. McGruder, Ch.H. III: Gravitational repulsion in the schwarzschild field. Phys. Rev. D 25, 3191–3194 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  60. Mishra, L.: The relativistic acceleration addition theorem. Class. Quantum Gravity 11, L97–L102 (1994)

    Article  ADS  Google Scholar 

  61. Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. Freeman, San Francisco (1973)

    Google Scholar 

  62. Moeller, C.: The Theory of Relativity. Clarendon Press, Oxford (1952)

    MATH  Google Scholar 

  63. Moffat, J.W.: Superluminary universe: A possible solution to the initial value problem in cosmology. Int. J. Mod. Phys. D 2, 351 (1993)

    Article  ADS  MATH  Google Scholar 

  64. Nandi, K.K., Zhang, Y.-Z.: General relativistic effects on quantum interference and the principle of equivalence. Phys. Rev. D 66, 063005 (2002). Arxiv ref.: gr-qc/0208050

    Article  ADS  Google Scholar 

  65. Ni, W.T.: Theoretical frameworks for testing relativistic gravity. IV. A compendium of metric theories of gravity and their post-Newtonian limits. Astrophys. J. 176, 769–796 (1972)

    Article  ADS  Google Scholar 

  66. Nordström, G.: Träge und schwere Masse in der Relativitäts-Mechanik. Ann. Phys. (Leipzig) 40, 856 (1913)

    ADS  Google Scholar 

  67. Nordström, G.: Zur theorie der Gravitation vom Standpunkt des Relativitätsprinzips. Ann. Phys. (Leipzig) 42, 533 (1913)

    ADS  Google Scholar 

  68. Ogievetsky, V.I., Polubarinov, I.V.: Interacting field of spin 2 and the Einstein equations. Ann. Phys. (N.Y.) 35, 167 (1965)

    Article  ADS  Google Scholar 

  69. Pitts, J.B., Schieve, W.C.: Null cones and Einstein’s equations in Minkowski spacetime. Found. Phys. 34, 211 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  70. Poincaré, H.: La science et l’hypothèse. Flammarion, Paris (1968/1902)

    Google Scholar 

  71. Poincaré, H.: Sur la dynamique de l’électron. C. R. Acad. Sci. Paris 140, 1504–1508 (1905)

    MATH  Google Scholar 

  72. Poincaré, H.: La Science et l’Hypothèse. Flammarion, Paris (1968/1902)

    Google Scholar 

  73. Puthoff, H.E.: Polarizable-vacuum (PV) approach to general relativity. Found. Phys. 32, 927 (2002)

    Article  Google Scholar 

  74. Reichenbach, H.: The Philosophy of Space and Time. Dover, New York (1957/1927)

    Google Scholar 

  75. Rindler, W.: Essential Relativity. Special, General, and Cosmological, revised 2nd edn. Springer, Berlin (1979)

    Google Scholar 

  76. Rindler, W., Mishra, L.: The nonreciprocity of relative acceleration in relativity. Phys. Lett. A 173, 105–108 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  77. Rosen, N.: Flat-space metric in general relativity theory. Ann. Phys. 22, 1–11 (1963)

    Article  ADS  MATH  Google Scholar 

  78. Sexl, R.U.: Theories of gravitation. Fortschr. Phys. 15, 269 (1967)

    Article  Google Scholar 

  79. Sjödin, T.: A note on Poincaré’s principle and the behaviour of moving bodies and clocks. Z. Naturforsch. A 35, 997–1000 (1980)

    MathSciNet  ADS  Google Scholar 

  80. Sjödin, T.: A scalar Euclidean theory of gravitation: Motion in a static spherically symmetric field. Found. Phys. Lett. 3, 543–556 (1990)

    Article  MathSciNet  Google Scholar 

  81. Stephani, H.: Relativity. An Introduction to Special an General Relativity, 3rd edn. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  82. Thirring, H.: Über die formale Analogie zwishen den elektromagnetishen Grundgleichungen und den Einsteinschen Gravitationsgleichungen erster Näherung. Phys. Z. 19, 204–205 (1918)

    Google Scholar 

  83. Thirring, H.: Über die Wirkung rotierender ferner Massen in der Einsteinschen Gravitationstheorie. Phys. Z. 19, 33–39 (1918)

    Google Scholar 

  84. Thirring, W.E.: An alternative approach to the theory of gravitation. Ann. Phys. 16, 96–117 (1961)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  85. Toretti, R.: Relativity and Geometry. Dover, New York (1983)

    Google Scholar 

  86. Watt, K., Misner, C.W.: Relativistic scalar gravity: A laboratory for numerical relativity. UMD PP-00-029. gr-qc/9910032

  87. Weinberg, S.: Photons and gravitons in perturbation theory: Derivation of Maxwell’s and Einstein’s equations. Phys. Rev. B 138, 988 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  88. Weinberg, S.: Gravitation and Cosmology. Principles and applications of the General Theory of Relativity. Wiley, London (1972)

    Google Scholar 

  89. Will, C.M.: Theory and Experiment in Gravitational Physics. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  90. Wilson, H.A.: An electromagnetic theory of gravitation. Phys. Rev. 17, 54–59 (1921)

    Article  ADS  Google Scholar 

  91. Wyss, W.: Helv. Phys. Acta 38, 469 (1965)

    MATH  Google Scholar 

  92. Yilmaz, H.: New approach to general relativity. Phys. Rev. 111, 1417–1426 (1958)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Broekaert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Broekaert, J. A Spatially-VSL Gravity Model with 1-PN Limit of GRT. Found Phys 38, 409–435 (2008). https://doi.org/10.1007/s10701-008-9210-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-008-9210-8

Keywords

Navigation