Skip to main content
Log in

Quantum Machine and Semantic Realism Approach: a Unified Model

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The Geneva–Brussels approach to quantum mechanics (QM) and the semantic realism (SR) nonstandard interpretation of QM exhibit some common features and some deep conceptual differences. We discuss in this paper two elementary models provided in the two approaches as intuitive supports to general reasonings and as a proof of consistency of general assumptions, and show that Aerts’ quantum machine can be embodied into a macroscopic version of the microscopic SR model, overcoming the seeming incompatibility between the two models. This result provides some hints for the construction of a unified perspective in which the two approaches can be properly placed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jauch J.M. (1968). Foundations of Quantum Mechanics. Addison Wesley, Reading, MA

    MATH  Google Scholar 

  2. Piron C. (1976). Foundations of Quantum Physics. Benjamin, Reading, MA

    MATH  Google Scholar 

  3. Aerts D. (1982). “Description of many physical entities without the paradoxes encountered in quantum mechanics”. Found. Phys. 12:1131

    Article  MathSciNet  Google Scholar 

  4. Aerts D. (1983). “Classical theories and nonclassical theories as a special case of a more general theory”. J. Math. Phys. 24: 2441

    Article  MathSciNet  ADS  Google Scholar 

  5. Aerts D. (1986). “A possible explanation for the probabilities of quantum mechanics”. J. Math. Phys. 27: 202

    Article  MathSciNet  ADS  Google Scholar 

  6. Aerts D. (1994). “Quantum structures, separated physical entities and probability”. Found. Phys. 24:1227

    Article  MathSciNet  Google Scholar 

  7. Aerts D. (1995). “Quantum structures: an attempt to explain their appearence in nature”. Int. J. Theor. Phys. 34:1165

    Article  MATH  MathSciNet  Google Scholar 

  8. Aerts D. (1999). “Foundations of quantum physics: a general realistic and operational approach”. Int. J. Theor. Phys. 38: 289

    Article  MATH  MathSciNet  Google Scholar 

  9. Aerts D. (1999). “Quantum mechanics: structures, axioms and paradoxes”. In: Aerts D., Pykacz J. (eds). Quantum Physics and the Nature of Reality. Kluwer Academic, Dordrecht

    Google Scholar 

  10. Aerts D., Durt T. (1994). “Quantum, classical and intermediate: an illustrative example”. Found. Phys. 24:1353

    Article  MathSciNet  Google Scholar 

  11. Aerts D., Aerts S. (2004). “Towards a general operational and realistic framework for quantum mechanics and relativity theory”. In: Elitzur A.C., Dolev S., Kolenda N. (eds). Quo Vadis Quantum Mechanics? Possible Developments in Quantum Theory in the 21st Century. Springer, Berlin

    Google Scholar 

  12. Garola C., Solombrino L. (1996). “The theoretical apparatus of semantic realism: a new language for classical and quantum physics”. Found. Phys. 26: 1121

    Article  MathSciNet  Google Scholar 

  13. Garola C., Solombrino L. (1996). “Semantic Realism versus EPR-like paradoxes: the Furry, Bohm–Aharonov and Bell paradoxes”. Found. Phys. 26:1329

    Article  MathSciNet  Google Scholar 

  14. Garola C. (1999). “Against ‘paradoxes’: a new quantum philosophy for quantum physics”. In: Aerts D., Pykacz J. (eds). Quantum Physics and the Nature of Reality. Kluwer Academic, Dordrecht

    Google Scholar 

  15. Garola C. (2000). “Objectivity versus nonobjectivity in quantum mechanics”. Found. Phys. 30:1539

    Article  MathSciNet  Google Scholar 

  16. Garola C. (2002). “A simple model for an objective interpretation of quantum mechanics”. Found. Phys. 32:1597

    Article  MathSciNet  Google Scholar 

  17. Garola C. (2003). “Embedding quantum mechanics into an objective framework”. Found. Phys. Lett. 16:605

    Article  MathSciNet  Google Scholar 

  18. Garola C., Pykacz J. (2004). “Locality and measurements within the SR model for an objective interpretation of quantum mechanics”. Found. Phys. 34:449

    Article  MATH  MathSciNet  Google Scholar 

  19. Ludwig G. (1983). Foundations of Quantum Mechanics I. Springer, Berlin

    MATH  Google Scholar 

  20. Mermin N.D. (1993).“Hidden variables and the two theorems of John Bell”. Rev. Mod. Phys. 65:803

    Article  MathSciNet  ADS  Google Scholar 

  21. Clauser J.F., Horne M.A. (1974).“Experimental consequences of objective local theories”. Phys. Rev. D 10:526

    Article  ADS  Google Scholar 

  22. Garola C. (2005). “MGP versus Kocken–Specker condition in hidden variables theories”. Int. J. Theor. Phys. 44:807

    Article  MathSciNet  Google Scholar 

  23. Kocken S., Specker E.P. (1967). “The problem of hidden variables in quantum mechanics”. J. Math. Mech. 17: 59

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Garola.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garola, C., Pykacz, J. & Sozzo, S. Quantum Machine and Semantic Realism Approach: a Unified Model. Found Phys 36, 862–882 (2006). https://doi.org/10.1007/s10701-006-9046-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-006-9046-z

Keywords

Navigation