Skip to main content
Log in

The theoretical apparatus of semantic realism: A new language for classical and quantum physics

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The standard interpretation of quantum physics (QP) and some recent generalizations of this theory rest on the adoption of a rerificationist theory of truth and meaning, while most proposals for modifying and interpreting QP in a “realistic” way attribute an ontological status to theoretical physical entities (ontological realism). Both terms of this dichotomy are criticizable, and many quantum paradoxes can be attributed to it. We discuss a new viewpoint in this paper (semantic realism, or briefly SR), which applies both to classical physics (CP) and to QP. and is characterized by the attempt of giving up verificationism without adopting ontological realism. As a first step, we construct a formalized observative language L endowed with a correspondence truth theory. Then, we state a set of axioms by means of L which hold both in CP and in QP. and construct a further language Lv which can express bothtestable andtheoretical properties of a given physical system. The concepts ofmeaning andtestability do not collapse in L and Le hence we can distinguish between semantic and pragmatic compatibility of physical properties and define the concepts of testability and conjoint testability of statements of L and Le. In this context a new metatheoretical principle (MGP) is stated, which limits the validity of empirical physical laws. By applying SR (in particular. MGP) to QP, one can interpret quantum logic as a theory of testability in QP, show that QP is semantically incomplete, and invalidate the widespread claim that contextuality is unavoidable in QP. Furthermore. SR introduces some changes in the conventional interpretation of ideal measurements and Heisenberg’s uncertainty principle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Garola. “Classical foundations of quantum logic.”Int. J. Theor. Phys. 30. 1 (1991).

    Google Scholar 

  2. C. Garola. “Semantic incompleteness of quantum physics.”Int. J. Theor. Phys. 31. 809 (1992).

    Google Scholar 

  3. C. Garola. “Quantum logics seen as quantum testability theories.”Int. J. Theor. Phys. 31. 1639 (1992).

    Google Scholar 

  4. C. Garola. “Truth versus testability in quantum logic.”Erkenntnis 37. 197 (1992).

    Google Scholar 

  5. C. Garola. “Semantic incompleteness of quantum physics and EPR-like paradoxes.”Int. J. Theor. Phys. 32. 1863 (1993).

    Google Scholar 

  6. C. Garola. “Reconciling local realism and quantum physics: a critique to Bell.”Theor. Mat. Fiz 99. 285 (1994).

    Google Scholar 

  7. C. Garola. “Criticizing Bell: Local realism and quantum physics reconciled.”Int. J. Theor. Phys. 34. 269 (1995).

    Google Scholar 

  8. C. Garola. “Questioning nonlocality: an operational critique to Bell’s theorem.” inThe Foundations of Quantum Mechanics. Historical Analysis and Open Questions. C. Garola and A. Rossi, eds. (Kluwer Academic. Dordrecht. 1995). p. 273.

    Google Scholar 

  9. C. Garola. “Pragmatic versus semantic contextuality in quantum physics.”Int. J. Theor. Phys. 34. 1383 (1995).

    Google Scholar 

  10. A. Einstein. B. Podolsky. and N. Rosen. “Can quantum mechanical description of reality be considered complete?.”Phys. Rev. 47. 777 (1935).

    Google Scholar 

  11. N. Bohr.Atomic Physics and Human Knowledge (Wiley. New York. 1958).

    Google Scholar 

  12. N. Bohr.Essays 1958 1962 on Atomic Physics and Human Knowledge (Wiley. New York. 1963).

    Google Scholar 

  13. W. Heisenberg.The Physical Principles of Quantum Theory (Dover, New York. 1930).

    Google Scholar 

  14. B. C. Van Fraassen. “A modal interpretation of quantum mechanics.” inCurrent Issues in Quantum Logic. E. G. Beltrametti and B. C. Van Fraassen. eds. (Plenum. New York. 1981).

    Google Scholar 

  15. R. B. Braithwaite.Scientific Explanation (Cambridge University Press. Cambridge. 1953).

    Google Scholar 

  16. C. C. Hempel.Aspects of Scientific Explanation (Free Press. New York. 1965).

    Google Scholar 

  17. B. Russell.An Inquiry into Meaning and Truth (Allen & Unwin. London. 1940).

    Google Scholar 

  18. R. Carnap. “Truth and confirmation.” inReadings in Philosophical Analysis. H. Feigl and W. Sellars. eds. (Appleton-Century-Crofts. New York. 1949).

    Google Scholar 

  19. R. Carnap.Philosophical Foundations of Physics (Basic Books. New York 1966).

    Google Scholar 

  20. K. R. Popper.Conjectures and Refutations (Routledge & Kegan Paul. London. 1969).

    Google Scholar 

  21. P. Bush. P. J. Lathi. and P. Mittelstaedt.The Quantum Theory of Measurement (Springer. Berlin. 1991).

    Google Scholar 

  22. G. Birkhoff and J. von Neumann. “The logic of quantum mechanics.”Ann. Math. 37. 823 (1936).

    Google Scholar 

  23. A. Tarski. “The semantic conception of truth and the foundations of semantics.” inSemantics and the Philosophy of Language L. Linsky. ed. (University of Illinois Press. Urbana. 1952).

    Google Scholar 

  24. C. Dalla Pozza and C. Garola. “A pragmatic interpretation of intuitionistic propositional logic.”Erkenntnis 43. 81 (1995).

    Google Scholar 

  25. M. Jammer.The Philosophy of Quantum Mechanics (Wiley. New York. 1974).

    Google Scholar 

  26. H. Reichenbach.Philosophic Foundations of Quantum Mechanics (University of California Press. Los Angeles. 1965).

    Google Scholar 

  27. J. S. Bell. “On the problem of hidden variables in quantum mechanics.”Rev. Mod. Phys.38. 447 (1966).

    Google Scholar 

  28. S. Kochen and E. P. Specker. “The problem of hidden variables in quantum mechanics.”J. Math. Mech. 17. 59 (1967).

    Google Scholar 

  29. N. D. Mermin. “Hidden variables and the two theorems of John Bell.”Rev. Mod. Phys.65. 803 (1993).

    Google Scholar 

  30. J. S. Bell. “On the Einstein Podolsky Rosen paradox.”Physics 1. 195 (1964).

    Google Scholar 

  31. E. P. Wigner. “On hidden variables and quantum mechanical probabilities.”Am. J. Phys.38. 1005 (1970).

    Google Scholar 

  32. F. Selleri. “History of the Einstein Podolsky Rosen paradox.” inQuantum Mechanics Versus Local Realism. F. Selleri. ed. (Plenum. New York. 1988). p. 1.

    Google Scholar 

  33. D. M. Greenberger. M. A. Horne. A. Shimony. and A. Zeilinger. “Bell’s theorem without inequalities.”Am. J. Phys. 58. 1131 (1990).

    Google Scholar 

  34. R. K. Clifton, M. L. G. Redhead, and J. M. Butterfield, “Generalization of the Greenberger Horne Zeilinger algebraic proof of nonlocality.”Found. Phys. 21. 149 (1991).

    Google Scholar 

  35. J. J. Sakurai,Modern Quatum Mechanics (Benjamin. Reading. Massachusetts. 1985).

    Google Scholar 

  36. C. Garola and L. Solombrino. “Semantic realism versus EPR-like paradoxes: the Furry, Bohm-Aharonov. and Bell paradoxes.”Found. Phys. 26. 1329 (1996).

    Google Scholar 

  37. B. D’Espagnat,Conceptual Foundations of Quantum Mechanics (Benjamin, Reading. Massachusetts. 1976).

    Google Scholar 

  38. W. M. De Muynck. W. De Baere, and H. Martens. “Interpretation of quantum mechanics, joint measurements of incompatible observables, and counterfactual definiteness.”Found. Phys. 24. 1589 (1994).

    Google Scholar 

  39. H. P. Stapp. “Comments on ‘Interpretation of quantum mechanics, joint measurement of incompatible observables and counterfactual definiteness’.”Found. Phys. 24. 1665 (1995).

    Google Scholar 

  40. D. Aerts. “Description of many physical entities without the paradoxes encountered in quantum mechanics.”Found. Phys. 12. 1131 (1982).

    Google Scholar 

  41. D. Foulis, C. Piron. C. Randall. “Realism, operationalism and quantum mechanics.”Found. Phys. 13. 813 (1983).

    Google Scholar 

  42. G. Ludwig,Foundations of Quantum Mechanics I (Springer. New York. 1983).

    Google Scholar 

  43. C. Piron.Foundations of Quantum Physics (Benjamin, Reading. Massachusetts. 1976).

    Google Scholar 

  44. C. Garola. “Embedding of posets into lattices in quantum logic.”Int. J. Theor. Phys. 24. 423 (1985).

    Google Scholar 

  45. K. Bugajska and S. Bugajski. “The lattice structure of quantum logics.”Ann. Inst. Henri Poincaré XIX. 333 (1973).

    Google Scholar 

  46. G. M. Mackey.The Mathematical Foundations of Quantum Mechanics (Benjamin. New York. 1963).

    Google Scholar 

  47. J. M. Jauch.Foundations of Quantum Mechanics (Addison Wesley. Reading, Massachusetts. 1968).

    Google Scholar 

  48. C. Garola “Propositions and orthocomplementation in quantum logic.”Int. J. Theor. Phys. 19. 369 (1980).

    Google Scholar 

  49. C. Garola and L. Solombrino. “Yes-no experiments and ordered structures in quantum physics,”Nuovo Cimento 77B. 87 (1983).

    Google Scholar 

  50. G. Cattaneo, C. Dalla Pozza. C. Garola. and G. Nisticó, “On the logical foundations of the Jauch-Piron approach to quantum physics.”Int. J. Theor. Phys. 27. 1313 (1988).

    Google Scholar 

  51. G. Cattaneo, C. Garola, and C. Nisticó, “Preparation-effects versus question-preparation structures.”J. Phys. Ess. 2. 197 (1989).

    Google Scholar 

  52. D. Dieks. “Quantum mechanics without the projection postulate and its realistic interpretation.”Found. Phys. 19. 1397 (1989).

    Google Scholar 

  53. K. Gottfried. “Does quantum mechanics carry the seeds of its own destruction?.”Phys. Worlds 4 (10). 34 (1991).

    Google Scholar 

  54. J. Bub. “Quantum mechanics without the projection postulate,”Found. Phys. 22. 737 (1992).

    Google Scholar 

  55. G. Cattaneo and G. Nisticó, “Interpretative remarks in quantum mechanics.” inThe Foundations of Quantum Mechanics. Historical Analysis and Open Questions. C. Garola and A. Rossi. eds. (Kluwer Academic. Dordrecht. 1995). p. 127.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garola, C., Solombrino, L. The theoretical apparatus of semantic realism: A new language for classical and quantum physics. Found Phys 26, 1121–1164 (1996). https://doi.org/10.1007/BF02275624

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02275624

Keywords

Navigation