Skip to main content
Log in

Tunneling as a Classical Escape Rate Induced by the Vacuum Zero-point Radiation

  • Published:
Foundations of Physics Aims and scope Submit manuscript

We make a brief review of the Kramers escape rate theory for the probabilistic motion of a particle in a potential well U(x), and under the influence of classical fluctuation forces. The Kramers theory is extended in order to take into account the action of the thermal and zero-point random electromagnetic fields on a charged particle. The result is physically relevant because we get a non-null escape rate over the potential barrier at low temperatures (T → 0). It is found that, even if the mean energy is much smaller than the barrier height, the classical particle can escape from the potential well due to the action of the zero-point fluctuating fields. These stochastic effects can be used to give a classical interpretation to some quantum tunneling phenomena. Relevant experimental data are used to illustrate the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kramers H.A. (1940). “Brownian motion in a field of force and the diffusion model of chemical reactions”. Physica 7:284

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Hänggi P., Talkner P., and Borkovec M. (1990). “Reaction-rate theory: fifty years after Kramers”. Rev. Mod. Phys. 62:251

    Article  ADS  Google Scholar 

  3. Marshall T.W., and Santos E. (1995). “Semiclassical treatment of macroscopic quantum relaxation”. An. Fis. 91:49

    Google Scholar 

  4. Marshall T.W. (1963). “Random electrodynamics”. Proc. Royal Soc. London 276A: 475

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Boyer T.H. (1975). “Random electrodynamics: the theory of classical electrodynamics with classical electromagnetic zero-point radiation”. Phys. Rev. D 11:790

    Article  ADS  Google Scholar 

  6. França H.M.,, Franco H., and Malta C.P. (1997). “A stochastic electrodynamics interpretation of spontaneous transitions in the hydrogen atom”. Eur. J. Phys. 18:343

    Article  Google Scholar 

  7. Cole D., and Zou Y. (2003). “Quantum mechanical ground state of hydrogen obtained from classical electrodynamics,” Phys. Lett. A 317:14

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Boyer T.H. (1980). “A brief survey of stochastic electrodynamics”. In: Barut A.O. (eds). Foundations of Radiation Theory and Quantum Electrodynamics. Plenum, New York, p. 49

    Google Scholar 

  9. de la Peña L. and Cetto A.M. (1996) The Quantum Dice. An Introduction to the Stochastic Electrodynamics. Kluwer Academic, Dordrecht

    Google Scholar 

  10. Milonni P.W. (1976). “Semiclassical and quantum-electrodynamical approaches in nonrela tivistic radiation theory”. Phys. Rep. 25:1

    Article  ADS  Google Scholar 

  11. Jackson J.D. (1975), Classical Electrodynamics, 2nd edn. Wiley, New York Chaps. 9 and 17.

    MATH  Google Scholar 

  12. Chandrasekhar S. (1943). “Stochastic problems in physics and astronomy”. Rev. Mod. Phys. 15:1

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Alberding N., Austin R.H., Beeson K.W., Chan S.S., Eisenstein L., Frauenfelder H., and Nordlund T.M. (1976). “Tunneling in ligand binding to heme proteins”. Science 192:1002

    Article  PubMed  ADS  Google Scholar 

  14. Baublitz M. Jr. (1995). “Electron field-emission data, quantum mechanics, and the classical stochastic theories”. Phys. Rev. A 51:1677

    Article  PubMed  ADS  Google Scholar 

  15. Baublitz M., Jr. (1993). “Electron-tunneling spectroscopy: a test of quantum mechanics”. Phys. Rev. A 47:R2423

    Article  PubMed  ADS  Google Scholar 

  16. Plummer E.W., and Gadzuk J.W. (1970). “Surface state on tungsten”. Phys. Rev. Lett. 25:1493

    Article  ADS  Google Scholar 

  17. Nelson E. (1966). “Derivation of the Schrödinger equation from Newtonian mechanics”. Phys. Rev. 150:1079

    Article  ADS  Google Scholar 

  18. Merzbacher E. Quantum Mechanics (Wiley, New York, 1970). See in particular the tunneling associated with the ammonia molecule (NH3) (Sec. 5, Eq. (5.63)).

  19. Faria A.J., França H.M., Malta C.P., and Sponchiado R.C. (2002). “Critical assessment of the Schrödinger picture of quantum mechanics”. Phys. Lett. A 305:322

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. M. França.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faria, A.J., França, H.M. & Sponchiado, R.C. Tunneling as a Classical Escape Rate Induced by the Vacuum Zero-point Radiation. Found Phys 36, 307–320 (2006). https://doi.org/10.1007/s10701-005-9017-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-005-9017-9

Keywords

Navigation