Skip to main content
Log in

On an electrodynamic origin of quantum fluctuations

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We use the Liénard–Wiechert potential to show that very violent fluctuations are experienced by an electromagnetic charged extended particle when it is perturbed from its rest state. The feedback interaction of Coulombian and radiative fields among different charged parts of the particle makes uniform motion unstable. Then, we show that radiative fields and radiation reaction produce dissipative and antidamping effects, triggering a self-oscillation. Finally, we compute the self-potential, which in addition to rest and kinetic energy, gives rise to a new contribution that shares features with the quantum potential. We suggest that this contribution to self-energy produces a symmetry breaking of the Lorentz group, bridging classical electromagnetism and quantum mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nelson, E.: Derivation of the Schrödinger equation from Newtonian mechanics. Phys. Rev. 150, 1079–1085 (1966)

    Google Scholar 

  2. Nelson, E.: Quantum Fluctuations. Princeton University Press, Princeton (1985)

    MATH  Google Scholar 

  3. Van Kampen, N.G.: Stochastic Processes in Physics and Chemistry. Elsevier, Amsterdam (1992)

    MATH  Google Scholar 

  4. Bohm, D.: A suggested interpretation of the quantum theory in terms of “hidden” variables. I. Phys. Rev. 85, 166–179 (1952)

    MathSciNet  MATH  Google Scholar 

  5. Bohm, D.: A suggested interpretation of the quantum theory in terms of “hidden” variables. II. Phys. Rev. 85, 180–193 (1952)

    MathSciNet  MATH  Google Scholar 

  6. Newton, I.: Philosophiæ Naturalis Principia Mathematica (Mathematical Principles of Natural Philosophy). London (1987, Original work published in 1687)

  7. Couder, Y., Protiere, S., Fort, E., Boudaoud, A.: Dynamical phenomena: walking and orbiting droplets. Nature 437, 208 (2005)

    Google Scholar 

  8. Protière, S., Boudaoud, A., Couder, Y.: Particle-wave association on a fluid interface. J. Fluid Mech. 544, 85–108 (2006)

    MathSciNet  MATH  Google Scholar 

  9. Fort, E., Eddi, A., Boudaoud, A., Moukhtar, J., Couder, Y.: Path-memory induced quantization of classical orbits. Proc. Natl. Acad. Sci. 107, 17515–17520 (2010)

    Google Scholar 

  10. Moláček, J., Bush, J.W.M.: The fluid trampoline: droplets bouncing on a soap film. J. Fluid. Mech. 727, 582–611 (2013)

    MATH  Google Scholar 

  11. Turton, S.E., Couchman, M.M.P., Bush, J.W.M.: A review of theoretical modeling of walking droplets: toward a generalized pilot-wave framework. Chaos 28, 096111 (2018)

    Google Scholar 

  12. Alligood, K.T., Sauer, T.D., Yorke, J.A.: Chaos: An Introduction to Dynamical Systems. Springer, New York (1996)

    MATH  Google Scholar 

  13. Grebogi, C., Ott, E., Yorke, J.A.: Chaos, strange attractors, and fractal basin boundaries in nonlinear dynamics. Science 238, 632–638 (1987)

    MathSciNet  MATH  Google Scholar 

  14. Li, G.X., Moon, F.C.: Fractal basin boundaries in a two-degree-of-freedom nonlinear system. Nonlinear Dyn. 1, 209–219 (1990)

    Google Scholar 

  15. Ghaffari, A., Tomizuka, M., Soltan, R.A.: The stability of limit cycles in nonlinear systems. Nonlinear Dyn. 56, 269–275 (2009)

    MathSciNet  MATH  Google Scholar 

  16. Liénard, A.: Champ électrique et magnétique produit par une charge concentrée en un point et animée d’un mouvement quelconque. L’Éclair. Electr. 16, 5 (1898)

    Google Scholar 

  17. Wiechert, E.: Elektrodynamische elementargesetze. Ann. Phys. 309, 667–689 (1901)

    MATH  Google Scholar 

  18. Lorentz, H.A.: La théorie élecromagnetique de Maxwell et son application aux corps mouvemants. Arch. Néel. Sci. Exactes Nat. 25, 363–552 (1892)

    Google Scholar 

  19. Abraham, M.: Theorie der Elektrizität: Eleltromagentische Theorie der Strahlung. Teubner, Leipzig (1905)

    MATH  Google Scholar 

  20. Griffiths, D.J., Russell, E.O.: Mass renormalization in classical electrodynamics. Am. J. Phys. 51, 1120–1126 (1983)

    Google Scholar 

  21. Griffiths, D.J.: Introduction to Electrodynamics. Prentice Hall, New Jersey (1989)

    Google Scholar 

  22. Maxwell, J.C.: A dynamical theory of the electromagnetic field. Philos. Trans. R. Soc. Lond. 155, 459–512 (1865)

    Google Scholar 

  23. Poincaré, H.: Sur la dynamique de l’électrone. Comptes Rendues 140, 1504–1508 (1905)

    MATH  Google Scholar 

  24. Abraham, M.: Die grundhypothesen der elektronentheorie. Physikalische Zeirschrift 5, 576–579 (1904)

    MATH  Google Scholar 

  25. Airy, G.B.: On certain conditions under which perpetual motion is possible. Trans. Camb. Philos. Soc. 3, 369–372 (1830)

    Google Scholar 

  26. Wolfram Research, Inc., Mathematica, Version 12.0, Champaign, IL (2019)

  27. Sommerfeld, A.: Zur quantentheorie der spektrallinien. Ann. Phys. 51, 1–94 (1916)

    Google Scholar 

  28. Torby, B.J.: Advanced Dynamics for Engineers. Holt Rinehart & Winston, Boston (1984)

    Google Scholar 

  29. Lyapunov, A.M.: The general problem of the stability of motion. Int. J. Control 55, 531–534 (1892)

    MathSciNet  Google Scholar 

  30. Jenkins, A.: Self-oscillation. Phys. Rep. 525, 167–222 (2013)

    MathSciNet  MATH  Google Scholar 

  31. Rychlewski, J.: On Hooke’s law. J. Appl. Math. Mech. 48, 303–314 (1984)

    MathSciNet  MATH  Google Scholar 

  32. Ugural, A.C., Fenster, S.K.: Advanced Strength and Applied Elasticity. Pearson Education, London (2003)

    MATH  Google Scholar 

  33. Rayleigh, J.W.S.B.: The Theory of Sound, 2nd ed., vol. I. New York, Dover (1945, Original work published in 1877)

  34. Van der Pol, B.: A theory of the amplitude of free and forced triode vibrations. Radio Rev. 1, 701–710 (1920)

    Google Scholar 

  35. Schrödinger, E.: Über die kräftefreie bewegung in der relativistischen quantenmechanik. Sitz. Preuss. Akad. Wiss. Phys. Math. Kl. 24, 418–428 (1930)

    MATH  Google Scholar 

  36. Sieber, J.: Local bifurcations in differential equations with state-dependent delay. Chaos 27, 114326 (2017)

    MathSciNet  MATH  Google Scholar 

  37. Jackson, J.D.: From Lorenz to Coulomb and other explicit gauge transformations. Am. J. Phys. 70, 917–928 (2002)

    Google Scholar 

  38. Pandey, M., Rand, R.H., Zehnder, A.T.: Frequency locking in a forced Mathieu-van der Pol-Duffing system. Nonlinear Dyn. 54, 3–12 (2008)

    MathSciNet  MATH  Google Scholar 

  39. López, A. G.: Classical electrodynamics can violate Bell’s inequalities. Manuscript submitted for publication (2020) https://doi.org/10.13140/RG.2.2.33233.76649

  40. Mackey, M. C.: Time’s arrow: the origins of thermodynamic behaviour. Courier Corporation (2003)

  41. Daza, A., Wagemakers, A., Sanjuán, M.A.F.: Wada property in systems with delay. Commun. Nonlinear Sci. Numer. Simulat. 43, 220–226 (2017)

    MathSciNet  MATH  Google Scholar 

  42. Bohm, D., Weinstein, M.: The self-oscillations of a charged particle. Phys. Rev. 74, 1789 (1948)

    MATH  Google Scholar 

  43. López, A. G.: On the stability of uniform motion. ArXiv Preprint, arXiv:2002.11194 (2020)

  44. Bohm, D., Hiley, B.J.: The Undivided Universe: An Ontological Interpretation of Quantum Theory. Routledge, Abingdon (2006)

    Google Scholar 

  45. Einstein, A.: Zur elektrodynamik bewegter körper. Ann. Phys. 322, 891–921 (1905)

    MATH  Google Scholar 

  46. Duffing, G.: Erzwungene Schwingungen bei veränderlicher eigenfrequenz und ihre technische Bedeutung. No. 41-42. F. Vieweg & Sohn (1918)

  47. Prigogine, I.: Time, structure and fluctuations. Science 201, 777–785 (1971)

    Google Scholar 

  48. Anderson, P.W.: More is different. Science 177, 393–396 (1972)

    Google Scholar 

  49. Nicolis, G.: Introduction to Nonlinear Science. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  50. Dirac, P.A.M.: The Principles of Quantum Mechanics. Oxford University Press, Oxford (1981)

    Google Scholar 

  51. Raju, C.K.: The electrodynamic 2-body problem and the origin of quantum mechanics. Found. Phys. 34, 937–963 (2004)

    MathSciNet  MATH  Google Scholar 

  52. de Broglie, L.: La mécanique ondulatoire et la structure atomique de la matiére et du rayonnement. J. Phys. Radium 8, 225–241 (1927)

    MATH  Google Scholar 

  53. Wiener, N.: Cybernetics or Control and Communication in the Animal and the Machine. Wiley, Wiley (1948)

    Google Scholar 

  54. Galilei, G.: Dialogue Concerning the Two World Systems. Drake, (trans.), Berkeley CA: University of California Press (1967, Original work published in 1632)

  55. de Soto, D.: Super Octo Libros Physicorum Questiones, 2nd edn. Salamanca: Andrea a Portonariis, lib. 7, q. IV (1555)

  56. Mira-Pérez, J.: Domingo de Soto, early dynamics theorist. Phys. Today 62, 9 (2009)

    Google Scholar 

  57. Lyle, S.N.: Self-Force and Inertia: Old Light on New Ideas. Springer, Berlin (2010)

    MATH  Google Scholar 

  58. Alekseev, G.A.: N-soliton solutions of Einstein–Maxwell equations. JETP Lett. 32, 277–279 (1980)

    Google Scholar 

  59. Faber, M.: Particles as stable topological solitons. J. Phys. Conf. Ser. 361, 012022 (2012)

    Google Scholar 

Download references

Acknowledgements

The author wishes to thank Alexandre R. Nieto for valuable comments on the elaboration of the present manuscript and discussion on some of its ideas. He also wishes to thank Alejandro Jenkins and Juan Sabuco for introducing him to the key role of self-oscillation in open physical systems, and for fruitful discussions on this concept as well. This work has been supported by the Spanish State Research Agency (AEI) and the European Regional Development Fund (ERDF) under Project No. FIS2016-76883-P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Álvaro G. López.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The following lines are devoted to obtain a power series relating the size of the particle d and the magnitude of the delay r/c. This relation allows us to approximate the distance l between the dumbbell’s position at time t and at the delayed time \(t_{r}\), as a function of the mass center velocity, its derivatives and the particle’s size [20, 21]. We begin with the relation

$$\begin{aligned} d=r \sqrt{1-\left( \frac{l}{r} \right) ^2}=r \left( 1-\frac{z^2}{2}-\frac{z^4}{8}-\ldots \right) , \end{aligned}$$
(52)

where the variable \(z=l/r\) has been introduced. On the other hand, Eq. (6) can be rewritten as

$$\begin{aligned} z=\frac{l}{r}=\beta +\frac{a}{2 c^2}r+\frac{\dot{a}}{6 c^3}r^2+\frac{\ddot{a}}{12 c^4}r^3+\frac{\dddot{a}}{120 c^5}r^4\ldots \end{aligned}$$
(53)

The square of z can then be computed. If we disregard the terms of the third order and higher orders as well, we obtain

$$\begin{aligned} z^2=\beta ^2+\frac{a}{c^2}\beta r+\frac{a^2}{4 c^4}r^2+\frac{\dot{a}}{3 c^3}\beta r^2+O(r^3). \end{aligned}$$
(54)

Concerning the fourth power of z we can write

$$\begin{aligned} z^4= & {} \beta ^4+\frac{2a}{c^2}\beta ^3 r+\frac{3 a^2}{c^4}\beta ^2 r^2\nonumber \\&\quad +\frac{2 \dot{a}}{3c^3}\beta ^3 r^2+O(r^3). \end{aligned}$$
(55)

to the same approximation as before.

Substitution of Eqs. (54) and (55) into Eq. (52), after gathering terms, yields

$$\begin{aligned}&d=\left( 1-\frac{\beta ^2}{2} -\frac{\beta ^4}{8} \right) r-\frac{a}{2c^2}\beta \left( 1+\frac{\beta ^2}{2}\right) r^2-\nonumber \\&\quad \left( \frac{a^2}{8 c^4}\left( 1+\frac{3\beta ^2}{2}\right) \right. \nonumber \\&\quad \left. \quad +\frac{\dot{a} \beta }{6 c^3} \left( 1+\frac{\beta ^2}{2} \right) \right) r^3+O(r^4). \end{aligned}$$
(56)

If we consider the non-relativistic limit, by just keeping terms of the first order in \(\beta \), we arrive at the approximated relation

$$\begin{aligned} d=r-\frac{a}{2c^2}\beta r^2-\left( \frac{a^2}{8 c^4}+\frac{\dot{a}}{6 c^3} \beta \right) r^3. \end{aligned}$$
(57)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López, Á.G. On an electrodynamic origin of quantum fluctuations. Nonlinear Dyn 102, 621–634 (2020). https://doi.org/10.1007/s11071-020-05928-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05928-5

Keywords

Navigation