Skip to main content
Log in

Uncorrelated mistletoe infection patterns and mating success with local host specialization in Psittacanthus calyculatus (Loranthaceae)

  • Original Paper
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

Mistletoe infection between conspecific and interspecific hosts can be restricted by seed dispersal, host-mistletoe compatibility and abiotic factors, yet no studies have linked mistletoe infection patterns and pollination together for understanding mistletoe distribution at a local scale. Psittacanthus calyculatus (Loranthaceae) is a hemiparasitic plant with a broad host range across its geographic distribution. The potential for local host adaptation has been shown using cross-inoculation experiments, in which plants of mistletoe seeds collected from a given host are more likely to survive when they are inoculated on conspecific host trees compared with those inoculated on other host provenances. Here we evaluate host adaptation by describing the local patterns of infection (prevalence and intensity) of P. calyculatus mistletoes on three native host tree species (Alnus acuminata, Quercus crassipes, Salix bonplandiana) and one introduced species (Populus alba) and carried out cross-pollination experiments to examine how pollination affects infection patterns of different host species. Mistletoe infection prevalence (proportion of infection) and infection intensity (mean number of mistletoes per tree) were in general disproportional with respect to the availability of native host tree species but higher to that of non-native host tree species. Cross-pollination experiments showed higher mating success on the native host tree species, suggesting higher local adaptation to specially Q. crassipes. The observed spatial distribution of host tree species and mistletoe infection along with the non-random mating could contribute to local genetic structuring of mistletoe populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akaike H (1981) Likelihood of a model and information criteria. J Econom 16:3–14

    Article  Google Scholar 

  • Amico GC, Nickrent DL (2009) Population structure and phylogeography of the mistletoes Tristerix corymbosus and T. aphyllus (Loranthaceae) using chloroplast DNA sequence variation. Am J Bot 96:1571–1580

    Article  CAS  PubMed  Google Scholar 

  • Amico GC, Vidal-Russell R, Nickrent DL (2012) Phylogenetic relationships and ecological speciation in the mistletoe Tristerix (Loranthaceae): the influence of pollinators, dispersers, and hosts. Am J Bot 94:558–567

    Article  Google Scholar 

  • Anderson RM, May RM (1978) Regulation and stability of host–parasite population interactions: I. Regulatory processes. J Anim Ecol 47:219–247

    Article  Google Scholar 

  • Anderson RM, May RM (1982) Coevolution of hosts and parasites. Parasitology 85:411–426

    Article  PubMed  Google Scholar 

  • Arce-Acosta I, Suzan-Azpiri H, Garcia Rubio O (2016) Biotic actors associated with the spatial distribution of the mistletoe Psittacanthus calyculatus in a tropical deciduous forest of central Mexico. Bot Sci 94:89–96

    Article  Google Scholar 

  • Arruda R, Carvalho LN, Del-Claro K (2006) Host specificity of a Brazilian mistletoe, Struthanthus aff. polyanthus (Loranthaceae), in cerrado tropical savanna. Flora 201:127–134

    Article  Google Scholar 

  • Aukema JE (2004) Distribution and dispersal of desert mistletoe is scale-dependent, hierarchically nested. Ecography 27:137–144

    Article  Google Scholar 

  • Aukema JE, Martínez del Rio C (2002a) Variation in mistletoe seed deposition: effects of intra-and interspecific host characteristics. Ecography 25:139–144

    Article  Google Scholar 

  • Aukema JE, Martínez del Rio C (2002b) Where does a fruit-eating bird deposit mistletoe seeds? Seed deposition patterns and an experiment. Ecology 83:3489–3496

    Article  Google Scholar 

  • Azpeitia F, Lara C (2006) Reproductive biology and pollination of the parasitic plant Psittacanthus calyculatus (Loranthaceae) in Central Mexico. J Torrey Bot Soc 133:429–438

    Article  Google Scholar 

  • Bennetts RE, White GC, Hawksworth FG et al (1996) The influence of dwarf mistletoe on bird communities in Colorado ponderosa pine forests. Ecol Appl 6:899–909

    Article  Google Scholar 

  • Bush GL (1969) Sympatric host race formation and speciation in frugivorous flies of the genus Rhagoletis (Diptera, Tephritidae). Evolution 23:237–251

    Article  Google Scholar 

  • Calder DM (1983) Mistletoe in focus: an introduction. In: Calder DM, Bernhardt P (eds) The biology of mistletoes. Academic Press, Sydney, pp 1–17

    Google Scholar 

  • Carlo TA, Morales JM (2008) Inequalities in fruit-removal and seed dispersal: consequences of bird behaviour, neighbourhood density and landscape aggregation. J Ecol 96:609–618

    Article  Google Scholar 

  • Clay K, Dement D, Rejmanek M (1985) Experimental evidence for host races in mistletoe (Phoradendron tomentosum). Am J Bot 72:1225–1231

    Article  Google Scholar 

  • Cocoletzi E, Angeles G, Ceccantini G et al (2016) Bidirectional anatomical effects in a mistletoe-host relationship: Psittacanthus schiedeanus mistletoe and its hosts Liquidambar styraciflua and Quercus germana. Am J Bot 103:986–997

    Article  PubMed  Google Scholar 

  • Craig TP, Horner JD, Itami JK (2001) Genetics, experience, and host-plant preference in Eurosta solidaginis: implications for host shifts and speciation. Evolution 55:773–782

    Article  CAS  PubMed  Google Scholar 

  • Criscione CD, Poulin R, Blouin MS (2005) Molecular ecology of parasites: elucidating ecological and microevolutionary processes. Mol Ecol 14:2247–2257

    Article  CAS  PubMed  Google Scholar 

  • Díaz Infante S, Lara C, Arizmendi MC et al (2016) Reproductive ecology and isolation of Psittacanthus calyculatus and P. auriculatus mistletoes (Loranthaceae). Peer J 4:e2491

    Article  PubMed  PubMed Central  Google Scholar 

  • Donohue K (1995) The spatial demography of mistletoe parasitism on a Yemeni Acacia. Int J Plant Sci 156:816–823

    Article  Google Scholar 

  • Dzerefos CM, Witkowski ETF, Shackleton CM (2003) Host-preference and density of woodrose-forming mistletoes (Loranthaceae) on savanna vegetation, South Africa. Plant Ecol 167:163–177

    Article  Google Scholar 

  • Fadini RF (2011) Non-overlap of hosts used by three congeneric and sympatric loranthaceous mistletoe species in an Amazonian savanna: host generalization to extreme specialization. Acta Bot Bras 25:337–345

    Article  Google Scholar 

  • Glazner JT, Devlin B, Ellstrand NC (1988) Biochemical and morphological evidence for host race evolution in desert mistletoe, Phoradendron californicum (Viscaceae). Plant Syst Evol 161:13–21

    Article  Google Scholar 

  • Hines WGS, Hines ROH (1979) The Eberhardt statistic and the detection of nonrandomness of spatial point distributions. Biometrika 66:73–79

    Article  Google Scholar 

  • Jaenike J (1996) Population-level consequences of parasite aggregation. Oikos 76:155–160

    Article  Google Scholar 

  • Jermy T (1984) Evolution of insect/host plant relationships. Am Nat 124:609–630

    Article  Google Scholar 

  • Jerome CA, Ford BA (2002a) Comparative population structure and genetic diversity of Arceuthobium americanum (Viscaceae) and its Pinus host species: insight into host–parasite evolution in parasitic angiosperms. Mol Ecol 11:407–420

    Article  CAS  PubMed  Google Scholar 

  • Jerome CA, Ford BA (2002b) The discovery of three genetic races of the dwarf mistletoe Arceuthobium americanum (Viscaceae) provides insight into the evolution of parasitic angiosperms. Mol Ecol 11:387–405

    Article  CAS  PubMed  Google Scholar 

  • Kavanagh P, Burns K (2012) Mistletoe macroecology: spatial patterns in species diversity and host use across Australia. Biol J Linn Soc 106:459–468

    Article  Google Scholar 

  • Kearns CA, Inouye DW (1993) Techniques for pollination biologists. University Press of Colorado, Colorado

    Google Scholar 

  • Knerer G, Atwood CE (1972) Evolutionary trends in the subsocial sawflies belonging to the Neodiprion abietis complex (Hymenoptera: Tenthredinoidea). Am Zool 12:407–418

    Article  Google Scholar 

  • Kuijt J (2009) Monograph of Psittacanthus (Loranthaceae). Systematic Botany Monographs, vol 86. American Society of Plant Taxonomists, pp 361

  • Laird NM, Ware JH (1982) Random-effects models for longitudinal data. Biometrics 3:963–974

    Article  Google Scholar 

  • Lamont BB (1983) Germination of mistletoes. In: Calder M, Bernhardt P (eds) The biology of mistletoes. Academic Press, Sydney, pp 129–143

    Google Scholar 

  • Lara C, Pérez G, Ornelas JF (2009) Provenance, guts, and fate: field and experimental evidence in a host-mistletoe-bird system. Ecoscience 16:399–407

    Article  Google Scholar 

  • Lemaitre AB, Troncoso AJ, Niemeyer HM (2012) Host preference of a temperate mistletoe: disproportional infection on three co-occurring host species influenced by differential success. Aust Ecol 37:339–345

    Article  Google Scholar 

  • Linhart YB, Malville Ellwood L, Karron JD et al (2003) Genetic differentiation in the dwarf mistletoes Arceuthobium vaginatum and Arceuthobium americanum on their principal and secondary hosts. Int J Plant Sci 164:61–69

    Article  CAS  Google Scholar 

  • Lira-Noriega A, Toro-Núñez O, Oaks JR et al (2015) The roles of history and ecology in chloroplast phylogeographic patterns of the bird-dispersed plant parasite Phoradendron californicum (Viscaceae) in the Sonoran Desert. Am J Bot 102:149–164

    Article  PubMed  Google Scholar 

  • López de Buen L, Ornelas JF (1999) Frugivorous birds, host selection and the mistletoe Psittacanthus schiedeanus, in central Veracruz, Mexico. J Trop Ecol 15:329–340

    Article  Google Scholar 

  • López de Buen LL, Ornelas JF (2002) Host compatibility of the cloud forest mistletoe Psittacanthus schiedeanus (Loranthaceae) in central Veracruz, Mexico. Am J Bot 89:95–102

    Article  Google Scholar 

  • López de Buen LL, Ornelas JF, García-Franco JG (2002) Mistletoe infection of trees located at fragmented forest edges in the cloud forests of central Veracruz, Mexico. For Ecol Manag 164:293–302

    Article  Google Scholar 

  • Magalhães S, Forbes MR, Skoracka A et al (2007) Host race formation in the Acari. Exp Appl Acarol 42:225–238

    Article  PubMed  Google Scholar 

  • Manly BFJ, Miller P, Cook LM (1972) Analysis of a selective predation experiment. Am Nat 106:719–736

    Article  Google Scholar 

  • Martínez del Rio C, Silva A, Medel R et al (1996) Seed dispersers as disease vectors: bird transmission of mistletoe seeds to plant hosts. Ecology 77:912–921

    Article  Google Scholar 

  • Mathiasen RL, Hawksworth FG, Edminster CB (1990) Effects of dwarf mistletoe on growth and mortality of Douglas-fir in the Southwest. Great Basin Nat 50:173–179

    Google Scholar 

  • Mathiasen RL, Nickrent DL, Shaw DC et al (2008) Mistletoes: pathology, systematics, ecology, and management. Plant Dis 92:988–1006

    Article  Google Scholar 

  • May DS (1971) The role of population differentiation in experimental infection of Prosopis by Phoradendron. Am J Bot 58:921–931

    Article  Google Scholar 

  • May RM, Anderson RM (1978) Regulation and stability of host-parasite population interactions: II. Destabilizing processes. J Anim Ecol 47:249–267

    Article  Google Scholar 

  • McCoy KD, Boulinier T, Tirard C et al (2003) Host-dependent genetic structure of parasite populations: differential dispersal of seabird tick host races. Evolution 57:288–296

    Article  PubMed  Google Scholar 

  • Medel R, Botto-Mahan C, Smith-Ramírez C et al (2002) Historia natural cuantitativa de una relación parásito-hospedero: el sistema Tristerix-cactáceas en Chile semiárido. Rev Chilena Hist Nat 75:127–140

    Google Scholar 

  • Monteiro RF, Martins RP, Yamamoto K (1992) Host specificity and seed dispersal of Psittacanthus robustus (Loranthaceae) in south-east Brazil. J Trop Ecol 8:307–314

    Article  Google Scholar 

  • Morales JM, Carlo TA (2006) The effects of plant distribution and frugivore density on the scale and shape of dispersal kernels. Ecology 87:1489–1496

    Article  PubMed  Google Scholar 

  • Nickrent DL, Butler TL (1990) Allozymic relationships of Arceuthobium campylopodum and allies in California. Biochem Syst Ecol 18:253–265

    Article  CAS  Google Scholar 

  • Nickrent DL, Butler TL (1991) Genetic relationships in Arceuthobium monticola and A. siskiyouense (Viscaceae): new dwarf mistletoe species from California and Oregon. Biochem Syst Ecol 19:305–313

    Article  Google Scholar 

  • Nickrent DL, Stell AL (1990) Electrophoretic evidence for genetic differentiation in two host races of hemlock dwarf mistletoe (Arceuthobium tsugense). Biochem Syst Ecol 18:267–280

    Article  CAS  Google Scholar 

  • Nickrent DL, Duff RJ, Colwell AE et al (1998) Molecular phylogenetic and evolutionary studies of parasitic plants. In: Soltis DE, Soltis PS, Doyle JJ (eds) Molecular systematics of plants II. Springer, New York, pp 211–241

    Chapter  Google Scholar 

  • Norton DA, Carpenter MA (1998) Mistletoes as parasites: host specificity and speciation. Trends Ecol Evol 13:101–105

    Article  CAS  PubMed  Google Scholar 

  • Norton DA, de Lange PJ (1999) Host specificity in parasitic mistletoes (Loranthaceae) in New Zealand. Funct Ecol 13:552–559

    Article  Google Scholar 

  • Norton DA, Hobbs RJ, Atkins L (1995) Fragmentation, disturbance, and plant distribution: mistletoes in woodland remnants in the Western Australian wheatbelt. Conserv Biol 9:426–438

    Article  Google Scholar 

  • Norton DA, Ladley J, Sparrow AD (2002) Host provenance effects on germination and establishment of two New Zealand mistletoes (Loranthaceae). Funct Ecol 16:657–663

    Article  Google Scholar 

  • Okubamichael DY, Griffiths ME, Ward D (2014) Reciprocal transplant experiment suggests host specificity of the mistletoe Agelanthus natalitius in South Africa. J Trop Ecol 30:153–163

    Article  Google Scholar 

  • Ornelas JF, Ordano M, de-Nova AJ et al (2007) Phylogenetic analysis of interspecific variation in nectar of hummingbird-visited plants. J Evol Biol 20:1904–1917

    Article  CAS  PubMed  Google Scholar 

  • Ornelas JF, Gándara E, Vásquez-Aguilar AA et al (2016) A mistletoe tale: postglacial invasion of Psittacanthus schiedeanus (Loranthaceae) to Mesoamerican cloud forests revealed by molecular data and species distribution modeling. BMC Evol Biol 16:78

    Article  PubMed  PubMed Central  Google Scholar 

  • Overton JM (1994) Dispersal and infection in mistletoe metapopulations. J Ecol 82:711–723

    Article  Google Scholar 

  • Overton JM (1997) Host specialization and partial reproductive isolation in desert mistletoe (Phoradendron californicum). SW Nat 42:201–209

    Google Scholar 

  • Perkins SL (2001) Phylogeography of Caribbean lizard malaria: tracing the history of vector-borne parasites. J Evol Biol 14:34–45

    Article  Google Scholar 

  • Phillips PA, Barnes MM (1975) Host race formation among sympatric apple, walnut, and plum populations of the codling moth, Laspeyresia pomonella. Ann Entomol Soc Am 68:1053–1060

    Article  Google Scholar 

  • Pinheiro J, Bates D (2006) Mixed-effects models in S and S-PLUS. Springer, New York, p 527

    Google Scholar 

  • Poulin R (2007) Evolutionary ecology of parasites, 2nd edn. Princeton University Press, Princeton

    Google Scholar 

  • Press MC, Phoenix GK (2005) Impacts of parasitic plants on natural communities. New Phytol 166:737–751

    Article  PubMed  Google Scholar 

  • Price PW (1980) Evolutionary biology of parasites. Princeton University Press, Princeton

    Google Scholar 

  • R Core Development Team (2014) R: a language and environment for statistical computing. R foundation for statistical computing, Vienna, http://WWW.r-project.org/)

  • Ramírez MM, Ornelas JF (2009) Germination of Psittacanthus schiedeanus (mistletoe) seeds after passage through the gut of Cedar Waxwings and Grey Silky-flycatchers. J Torrey Bot Soc 136:322–331

    Article  Google Scholar 

  • Ramírez MM, Ornelas JF (2012) Cross-infection experiments of Psittacanthus schiedeanus: effects of host provenance, gut passage and host fate on mistletoe seedling survival. Plant Dis 96:780–787

    Article  Google Scholar 

  • Reid N (1989) Dispersal of mistletoes by honeyeaters and flowerpeckers: components of seed dispersal quality. Ecology 70:137–145

    Article  Google Scholar 

  • Reid N, Smith MS, Zhao Gui Y et al (1995) Ecology and population biology of mistletoes. In: Lowman MD, Nadkarni NM (eds) Forest canopies. Academic Press, San Diego, pp 285–310

    Google Scholar 

  • Rieseberg LH, Wendel J (2004) Plant speciation—rise of the poor cousins. New Phytol 161:1–21

    Google Scholar 

  • Rieseberg LH, Willis JH (2007) Plant speciation. Science 317:910–914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rist L, Uma Shaanker R, Ghazoul J (2011) The spatial distribution of mistletoe in a southern Indian tropical forest at multiple scales. Biotropica 43:50–57

    Article  Google Scholar 

  • Rödl T, Ward D (2002) Host recognition in a desert mistletoe: early stages of development are influenced by substrate and host origin. Funct Ecol 16:128–134

    Article  Google Scholar 

  • Roura-Pascual N, Brotons L, García D et al (2012) Local and landscape-scale biotic correlates of mistletoe distribution in Mediterranean pine forests. For Syst 21:179–188

    Google Scholar 

  • Roxburgh L, Nicolson SW (2005) Patterns of host use in two African mistletoes: the importance of mistletoe–host compatibility and avian disperser behaviour. Funct Ecol 19:865–873

    Article  Google Scholar 

  • Sargent S (1990) Neighborhood effects on fruit removal by birds: a field experiment with Viburnum dentatum (Caprifoliaceae). Ecology 71:1289–1298

    Article  Google Scholar 

  • Sargent S (1995) Seed fate in a tropical mistletoe: the importance of host twig size. Funct Ecol 9:197–204

    Article  Google Scholar 

  • Shaw DJ, Grenfell BT, Dobson AP (1998) Patterns of macroparasite aggregation in wildlife host populations. Parasitology 117:597–610

    Article  PubMed  Google Scholar 

  • Stiles FG, Freeman CE (1993) Patterns in floral nectar characteristics of some bird-visited plant species from Costa Rica. Biotropica 25:191–205

    Article  Google Scholar 

  • Sumida A, Miyaura T, Torii H (2013) Relationships of tree height and diameter at breast height revisited: analyses of stem growth using 20-year data of an even-aged Chamaecyparis obtusa stand. Tree Physiol 33:106–118

    Article  PubMed  PubMed Central  Google Scholar 

  • Teodoro GS, van den Berg E, Santos MDCN et al (2010) How does a Psittacanthus robustus Mart. population structure relate to a Vochysia thyrsoidea Pohl. host population? Flora 205:797–801

    Article  Google Scholar 

  • Troncoso AJ, Cabezas NJ, Faúndez EH et al (2010) Host-mediated volatile polymorphism in a parasitic plant influences its attractiveness to pollinators. Oecologia 162:413–425

    Article  PubMed  Google Scholar 

  • Ward SA (1992) Assessing functional explanations of host-specificity. Am Nat 139:883–891

    Article  Google Scholar 

  • Yan Z, Reid N (1995) Mistletoe (Amyema miquelii and A. pendulum) seedling establishment on eucalypt hosts in eastern Australia. J Appl Ecol 32:778–784

    Article  Google Scholar 

  • Yule KM, Koop JAH, Alexandre NM et al (2016) Population structure of a vector-borne plant parasite. Mol Ecol 25:3332–3343

    Article  PubMed  Google Scholar 

  • Zuber D, Widmer A (2009) Phylogeography and host race differentiation in the European mistletoe (Viscum album L.). Mol Ecol 18:1946–1962

    Article  CAS  PubMed  Google Scholar 

  • Zuria I, Castellanos I, Gates JE (2014) The influence of mistletoes on birds in an agricultural landscape of central Mexico. Acta Oecol 61:51–56

    Article  Google Scholar 

Download references

Acknowledgments

We thank S. Díaz-Infante, H. Martínez-Roldan, S. Rodríguez-Mendieta, and the municipal and community authorities of Tetlatlahuca (San Andrés Coamilpa, Santa Agueda and Santa Cruz) for field assistance and logistic support, and R. Guevara for statistical advice. We are indebted to Antonio González-Rodríguez, Eduardo Ruiz-Sanchez and three anonymous reviewers for comments on previous versions of the manuscript. Permission to conduct our fieldwork was granted by the Mexican government (INE, SEMARNAT, SGPA/DGGFS/712/1299/12). This project was funded by research funds (20030/10563) from the Departamento de Biología Evolutiva, Instituto de Ecología, A.C. (INECOL), and from a competitive grant (155686) from the Consejo Nacional de Ciencia y Tecnología (CONACyT) awarded to J.F.O. M.J.P.C. was supported by a doctoral scholarship from CONACyT (365006/248109). This work constitutes partial fulfilment of MJPC’s doctorate at INECOL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Francisco Ornelas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pérez-Crespo, M.J., Lara, C. & Ornelas, J.F. Uncorrelated mistletoe infection patterns and mating success with local host specialization in Psittacanthus calyculatus (Loranthaceae). Evol Ecol 30, 1061–1080 (2016). https://doi.org/10.1007/s10682-016-9866-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-016-9866-z

Keywords

Navigation