Skip to main content
Log in

Host race formation in the Acari

  • Review Paper
  • Published:
Experimental and Applied Acarology Aims and scope Submit manuscript

Abstract

Host race formation generates diversity within species and may even lead to speciation. This phenomenon could be particularly prevalent in the Acari due to the often intimate interaction these species have with their hosts. In this review, we explore the process of host race formation, whether it is likely to occur in this group and what features may favour its evolution. Although few studies are currently available and tend to be biased toward two model species, results suggest that host races are indeed common in this group, and more likely to occur when hosts are long-lived. We discuss future directions for research on host-associated adaptations in this group of organisms and the potential relevance of host race formation for the biodiversity of mites and ticks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agrawal AA (2000) Host-range evolution: Adaptation and trade-offs in fitness of mites on alternative hosts. Ecology 81:500–508

    Article  Google Scholar 

  • Bailly X, Migeon A, Navajas M (2004) Analysis of microsatellite variation in the spider mite pest Tetranychus turkestani (Acari: Tetranychidae) reveals population genetic structure and raises questions about related ecological factors. Biol J Linnean Soc 82:69–78

    Article  Google Scholar 

  • Bazin E, Glemin S, Galtier N (2006) Population size does not influence mitochondrial genetic diversity in animals. Science 312:570–572

    Article  PubMed  CAS  Google Scholar 

  • Berlocher SH, Feder JL (2002) Sympatric speciation in phytophagous insects: Moving beyond controversy? Annu Rev Entomol 47:773–815

    Article  PubMed  CAS  Google Scholar 

  • Bohonak AJ (1999) Effect of insect-mediated dispersal on the genetic structure of postglacial water mite populations. Heredity 82: 451–461

    Article  PubMed  Google Scholar 

  • Brossard M, Wikel SK (2004) Tick immunobiology. Parasitology 129 (Suppl):S161–S176

    Article  PubMed  CAS  Google Scholar 

  • Castagnoli M (1996) Ornamental coniferous and shaded trees. In: Lindquist EE, Sabelis MW, Bruin J (eds) Eriophyoid mites: their biology, natural enemies and control (World Crop Pests). Elsevier Science B.V., Amsterdam, pp 661–669

    Google Scholar 

  • De Lillo E, Duso C (1996) Currants and berries. In: Lindquist EE, Sabelis MW, Bruin J (eds) Eriophyoid mites: their biology, natural enemies and control (World Crop Pests). Elsevier Science B.V., Amsterdam, pp 583–591

    Google Scholar 

  • De Meeûs T, McCoy KD, Prugnolle F, Chevillon C, Durand P, Hurtrez-Boussès S, Renaud F (2007) Population genetics and molecular epidemiology or how to “débusquer la bête”. Infect Genet Evol 7(2):308–332

  • Diehl SR, Bush GL (1984) An evolutionary and applied perspective of insect biotypes. Annu Rev Entomol 29:471–504

    Article  Google Scholar 

  • Dres M, Mallet J (2002) Host races in plant-feeding insects and their importance in sympatric speciation. Phil Trans R Soc Lond B 357:471–492

    Article  Google Scholar 

  • Edwards DD, Labhart M (2000) Genetic differences among host-associated populations of water mites (Acari: Unionicolidae: Unionicola): allozyme variation supports morphological differentiation. J Parasitol 86:1008–1011

    PubMed  CAS  Google Scholar 

  • Falco RC, Fish D (1991) Horizontal movement of adult Ixodes dammini (Acari: Ixodidae) attracted to CO2-baited traps. J Med Entomol 28:726–729

    PubMed  CAS  Google Scholar 

  • Filchak KE, Roethele JB, Feder JL (2000) Natural selection and sympatric divergence in the apple maggot Rhagoletis pomonella. Nature 407:739–742

    Article  PubMed  CAS  Google Scholar 

  • Fry JD (1990) Trade-offs in fitness on different hosts—Evidence from a selection experiment with a phytophagous mite. Am Nat 136:569–580

    Article  Google Scholar 

  • Funk DJ, Filchak KE, Feder JL (2002) Herbivorous insects: model systems for the comparative study of speciation. Ecology 116:251–267

    Google Scholar 

  • Futuyma DJ (1976) Food plant specialization and environmental predictability in Lepidoptera. Am Nat 110:285–292

    Article  Google Scholar 

  • Gandon S, Michalakis Y (2002) Local adaptation, evolutionary potential and host-parasite coevolution: interactions between migration, mutation, population size and generation time. J Evol Biol 15:451–462

    Article  Google Scholar 

  • Garcia-dorado A, Martin P, Garcia N (1991) Soft selection and quantitative genetic variation—A laboratory experiment. Heredity 66:313–323

    PubMed  Google Scholar 

  • Giorgi MS, Arlettaz R, Guillaume F, Nussle S, Ossola C, Vogel P, Christe P (2004) Causal mechanisms underlying host specificity in bat ectoparasites. Oecologia 138:648–654

    Article  PubMed  Google Scholar 

  • Gotoh T, Bruin J, Sabelis MW, Menken SBJ (1993) Host race formation in Tetranychus urticae—genetic differentiation, host-plant preference, and mate choice in a tomato and a cucumber strain. Entomol Exp Appl 68:171–178

    Article  Google Scholar 

  • Gould F (1979) Rapid host range evolution in a population of the phytophagous mite Tetranychus urticae Koch. Evolution 33:791–802

    Article  Google Scholar 

  • Groman JD, Pellmyr O (2000) Rapid evolution and specialization following host colonization in a yucca moth. J Evol Biol 13:223–236

    Article  CAS  Google Scholar 

  • Groot TVM, Janssen A, Pallini A, Breeuwer JAJ (2005) Adaptation in the asexual false spider mite Brevipalpus phoenicis: evidence for frozen niche variation. Exp Appl Acarol 36:165–176

    Article  PubMed  Google Scholar 

  • Hedrick PW (1986) Genetic-polymorphism in heterogeneous environments—A decade later. Annu Rev Ecol Syst 17:535–566

    Article  Google Scholar 

  • Jaenike J (1981) Critera for ascertaining the existence of host races. Am Nat 117:830–834

    Article  Google Scholar 

  • Jarne P, Lagoda PJL (1996) Microsatellites, from molecules to populations and back. Trends Ecol Evol 11:424–429

    Article  Google Scholar 

  • Kassen R (2002) The experimental evolution of specialists, generalists, and the maintenance of diversity. J Evol Biol 15:173–190

    Article  Google Scholar 

  • Kawecki TJ, Ebert D (2004) Conceptual issues in local adaptation. Ecol Lett 7:1225–1241

    Article  Google Scholar 

  • Kennedy GG, Smitley DR (1985) Dispersal. In: Helle W, Sabelis MW (eds) Spider mites—their biology, natural enemies and control. Elsevier, Amsterdam, pp 233–242

    Google Scholar 

  • Kirkpatrick M, Ravigne V (2002) Speciation by natural and sexual selection: models and experiments. Am Nat 159:S22–S35

    Article  PubMed  Google Scholar 

  • Koffi BB, de Meeûs T, Barré N, Durand P, Arnathau C, Chevillon C (2006) Founder effects, inbreeding and effective sizes in the Southern cattle tick: the effect of transmission dynamics and implications for pest management. Mol Ecol 15:4603–4611

    Article  PubMed  CAS  Google Scholar 

  • Lajeunesse MJ, Forbes MR, Smith BP (2004) Species and sex biases in ectoparasitism of dragonflies by mites. Oikos 106:501–508

    Article  Google Scholar 

  • Lampo M, Rangel Y, Mata A (1998) Population genetic structure of a three-host tick, Amblyomma dissimile, in eastern Venezuela. J Parasitol 84:1137–1142

    Article  PubMed  CAS  Google Scholar 

  • Lesna I, Sabelis MW (1999) Diet-dependent female choice for males with ‘good genes’ in a soil predatory mite. Nature 401:581–584

    Article  CAS  Google Scholar 

  • Levene H (1953) Genetic equilibrium when more than one ecological niche is available. Am Nat 87:331–333

    Article  Google Scholar 

  • Magalhães S, Fayard J, Janssen A, Olivieri I (2007) Adaptation in a spider mite population after long-term evolution on a single host plant. J Evol Biol doi: 10.1111/j.1420-9101.2007.01365.x

  • McCoy KD, Boulinier T, Tirard C, Michalakis Y (2001) Host specificity of a generalist parasite: genetic evidence of sympatric host races in the seabird tick Ixodes uriae. J Evol Biol 14:395–405

    Article  Google Scholar 

  • McCoy KD, Chapuis E, Tirard C, Boulinier T, Michalakis Y, Le Bohec C, Le Maho Y, Gauthier-Clerc M (2005) Recurrent evolution of host-specialized races in a globally distributed parasite. Proc R Soc Lond Ser B-Biol Sci 272:2389–2395

    Article  Google Scholar 

  • Meyers LA, Bull JJ (2002) Fighting change with change: adaptive variation in an uncertain world. Trends Ecol Evol 17:551–557

    Article  Google Scholar 

  • Navajas M (1998) Host plant associations in the spider mite Tetranychus urticae (Acari: Tetranychidae): insights from molecular phylogeography. Exp Appl Acarol 22:201–214

    Article  Google Scholar 

  • Navajas M, Perrot-Minnot MJ, Lagnel J, Migeon A, Bourse T, Cornuet JM (2002) Genetic structure of a greenhouse population of the spider mite Tetranychus urticae: spatio-temporal analysis with microsatellite markers. Ins Mol Biol 11:157–165

    Article  CAS  Google Scholar 

  • Nishimura S, Hinomoto N, Takafuji A (2005) Gene flow and spatio-temporal genetic variation among sympatric populations of Tetranychus kanzawai (Acari: Tetranychidae) occurring on different host plants, as estimated by microsatellite gene diversity. Exp Appl Acarol 35:59–71

    Article  PubMed  Google Scholar 

  • Nosil P, Vines TH, Funk DJ (2005) Perspective: reproductive isolation caused by natural selection against immigrants from divergent habitats. Evolution 59:705–719

    PubMed  Google Scholar 

  • Oldfield GN (2005) Biology of Gall-inducing Acari. In: Raman A, Schaefer CW, Withers TM (eds) Biology, ecology and evolution of gall-inducing arthropods. Science Publishers, Enfield, USA, pp 35–57

    Google Scholar 

  • Osakabe M (1993) Divergence of the northern and southwestern populations of Panonychus mori Yokoyama (Acari, Tetranychidae). In Japan in host-range and reproductive compatibility. Appl Entomol Zoolog 28:189–197

    Google Scholar 

  • Osakabe M, Komazaki S (1996) Host range segregation and reproductive incompatibility among Panonychus citri populations infesting Osmanthus trees and other host plants. Appl Entomol Zoolog 31:397–406

    Google Scholar 

  • Pegler KR, Evans L, Stevens JR, Wall R (2005) Morphological and molecular comparison of host-derived populations of parasitic Psoroptes mites. Med Vet Entomol 19:392–403

    Article  PubMed  CAS  Google Scholar 

  • Radwan J (2004) Effectiveness of sexual selection in removing mutations induced with ionizing radiation. Ecol Lett 7:1149–1154

    Article  Google Scholar 

  • Ravigne V, Olivieri I, Dieckmann U (2004) Implications of habitat choice for protected polymorphisms. Evol Ecol Res 6:125–145

    Google Scholar 

  • Rice WR (1987) Speciation via habitat specialization: the evolution of reproductive isolation as a correlated character. Evol Ecol 1:301–314

    Article  Google Scholar 

  • Skoracka A, Kuczynski L (2006) Is the cereal rust mite, Abacarus hystrix really a generalist? Testing colonization performance on novel hosts. Exp Appl Acarol 38:1–13

    Article  PubMed  Google Scholar 

  • Sonenshine DE (1991) Biology of ticks, vol 1. Oxford University Press, Oxford

    Google Scholar 

  • Spichtig M, Kawecki TJ (2004) The maintenance (or not) of polygenic variation by soft selection in heterogeneous environments. Am Nat 164:70–84

    Article  PubMed  Google Scholar 

  • Tsagkarakou A, Navajas M, Lagnel J, Pasteur N (1997) Population structure in the spider mite Tetranychus urticae (Acari: Tetranychidae) from Crete based on multiple allozymes. Heredity 78:84–92

    Article  PubMed  CAS  Google Scholar 

  • Tsagkarakou A, Navajas M, Papaioannou-Souliotis P, Pasteur N (1998) Gene flow among Tetranychus urticae (Acari: Tetranychidae) populations in Greece. Mol Ecol 7:71–79

    Article  CAS  Google Scholar 

  • Tsagkarakou A, Navajas M, Rousset F, Pasteur N (1999) Genetic differentiation in Tetranychus urticae (Acari: Tetranychidae) from greenhouses in France. Exp Appl Acarol 23:365–378

    Article  Google Scholar 

  • Tucic N, Milanovic D, Mikuljanac S (1995) Laboratory evolution of host plant utilization in the bean weevil (Acanthoscelides obtectus). Genet Sel Evol 27:491–502

    Google Scholar 

  • Vala F, Egas M, Breeuwer JAJ, Sabelis MW (2004) Wolbachia affects oviposition and mating behaviour of its spider mite host. J Evol Biol 17:692–700

    Article  PubMed  CAS  Google Scholar 

  • Walter DE, Proctor HC (1999) Mites: ecology, evolution and behaviour. University of New South Wales Press and CAB International

  • Walton SF, Dougall A, Pizzutto S, Holt D, Taplin D, Arlian LG, Morgan M, Currie BJ, Kemp DJ (2004) Genetic epidemiology of Sarcoptes scabiei (Acari: Sarcoptidae) in northern Australia. Int J Parasit 34:839–849

    Article  CAS  Google Scholar 

  • Weeks AR, Van Opijnen T, Breeuwer JAJ (2000) AFLP fingerprinting for assessing intraspecific variation and genome mapping in mites. Exp Appl Acarol 24:775–793

    Article  PubMed  CAS  Google Scholar 

  • Whitlock MC (1996) The red queen beats the jack-of-all-trades: the limitations on the evolution of phenotypic plasiticity and niche breadth. Am Nat 148:S65–S77

    Article  Google Scholar 

Download references

Acknowledgements

This paper was inspired by a symposium on Host-Race Formation, organised by KM and SM at the International Congress of Acarology held in Amsterdam in August 2006. Comments by Isabelle Olivieri were highly appreciated. SM was funded by a grant from the Portuguese Science Foundation (FCT- BI 15997). KM and CC were supported by the CNRS and the IRD, and by funding from the BRG (project n° 53), the French Polar Institute (IPEV programme n°333) and the ANR (project Jeunes chercheurs-jeunes chercheuses “VectorAdapt”). MRF was supported by a NSERC (Natural Sciences and Engineering Research Council of Canada) discovery grant. CC received funding by the French Ministry of Ecology (InvaBio program). This is publication ISEM–2007–063 of the Institut des Sciences de l’Evolution, Montpellier.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Magalhães.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Magalhães, S., Forbes, M.R., Skoracka, A. et al. Host race formation in the Acari. Exp Appl Acarol 42, 225–238 (2007). https://doi.org/10.1007/s10493-007-9091-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10493-007-9091-0

Keywords

Navigation