Skip to main content
Log in

QTL identification on two genetic systems for rapeseed glucosinolate and erucic acid contents over two seasons

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Glucosinolate and erucic acid are important plant compounds in rapeseed believed to have numerous functions in rapeseed-environment interactions. However, little is known about the QTL information related to the two different genetic systems including the embryo nuclear chromosomes and maternal plant nuclear chromosomes for glucosinolate content (GSLC) and erucic acid content (EAC) in rapeseed. Differences in QTL distribution between these two genetic systems, which control the performance of GSLC and EAC across different environmental conditions, were analyzed in the present study. A set of 202 DH populations derived from an elite hybrid cross of ‘Tapidor’ × ‘Ningyou7’ and their two backcross populations BC1F1 1 (DHs × Tapidor) and BC1F1 2 (DHs × Ningyou7) generated in two years were used as experimental materials for the study. A total of nine loci for GSLC and three loci for EAC with significant embryo additive main effects, embryo dominant main effects and/or maternal additive main effects, explaining 83.8 and 89.7 %, respectively, of their phenotypic variation, were identified. Although QTL × environment interaction effects were also detected in the present experiment, they played a minimum role in influencing the phenotypic variation. It was noted that qEAC-7-1 for EAC mapped on linkage group A7 was detected as the major QTL and could explain 68.32 % of the phenotypic variation for this trait. These results could be useful for the molecular maker-assisted breeding of GSLC and EAC quality traits based on the influence of two genetic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Amar S, Ecke W, Becker HC, Möllers C (2008) QTL for phytosterol and sinopate ester content in Brassica napus L. collocate with the two erucic acid genes. Theor Appl Genet 116:1051–1061

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Anand I, Downey R (1981) A study of erucic acid alleles in digenomic rapeseed (Brassica napus L.). Can J Plant Sci 61:199–203

    Article  CAS  Google Scholar 

  • Badawy IH, Atta B, Ahmed WM (1994) Biochemical and toxicological studies on the effect of high and low erucic acid rapeseed oil on rats. Nahrung 38(4):402–411

    Article  CAS  PubMed  Google Scholar 

  • Barbara AH, Jonathan G (2006) Biology and biochemistry of glucosinolates. Annu Rev Plant Biol 57:303–333

    Article  Google Scholar 

  • Basunanda P, Spiller TH, Hasan M, Gehringer A, Schondelmaier J, Lühs W, Friedt W, Snowdon RJ (2007) Marker-assisted increase of genetic diversity in a double-low seed quality winter oilseed rape genetic background. Plant Breed 126:581–587

    Article  Google Scholar 

  • Bisht NC, Gupta V, Ramchiary N, Sodhi YS, Mukhopadhyay A, Arumugam N, Pental D, Pradhan AK (2009) Fine mapping of loci involved with glucosinate biosynthesis in oilseed mustard (Brassica juncea) using genomic information from allied species. Theor Appl Genet 118:413–421

    Article  CAS  PubMed  Google Scholar 

  • Cardoza V, Stewart CN (2007) Canola. Biotechnol Agr Forest 61:29–37

    Article  CAS  Google Scholar 

  • Chen GL, Zhang B, Wu JG, Shi CH (2011a) Nondestructive assessment of amino acid composition in rapeseed meal based on intact seeds by near-infrared reflectance spectroscopy. Anim Feed Sci Tech 165:111–119

    Article  CAS  Google Scholar 

  • Chen G, Wu J, Shi C (2011b) Dynamic genetic effects on threonine content in rapeseed (Brassica napus L.) meal at different developmental stages. Czech J Genet Plant Breed 47(3):101–113

    Google Scholar 

  • Cui YH, Wu RL (2005) Statistical model for characterizing epistatic control of triploid endosperm triggered by maternal and offspring QTLs. Genet Res Camb 86:65–75

    Article  Google Scholar 

  • Cui YH, Casella G, Wu RL (2004) Mapping quantitative trait loci interactions from the maternal and offspring genomes. Genetics 167:1017–1026

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Das S, Roscoe TJ, Delseny M, Srivastava PS, Lakshmikumaran M (2002) Cloning and molecular characterization of the Fatty Acid Elongase 1 (FAE 1) gene from high and low erucic acid lines of Brassica campestris and Brassica oleracea. Plant Sci 162:245–250

    Article  CAS  Google Scholar 

  • Doerge RW, Churchill GA (1996) Permutation tests for multiple loci affecting a quantitative character. Genetics 142:285–294

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ecke W, Uzunova M, WeiBleder K (1995) Mapping the genome of rapeseed (Brassica napus L.). II. Localization of genes controlling erucic acid synthesis and seed oil content. Theor Appl Genet 91:972–977

    CAS  PubMed  Google Scholar 

  • Feng J, Long Y, Shi Shi JQ, Barker G, Meng JL (2012) Characterization of metabolite quantitative trait loci and metalbolic networks that control glucosinolate concentration in the seeds and leaves of Brassica napus. New Phytol 193:96–108

    Article  CAS  PubMed  Google Scholar 

  • Foolad MR, Jones RA (1992) Models to estimate maternally controlled genetic variation in quantitative seed characters. Theor Appl Genet 83:360–366

    Article  CAS  PubMed  Google Scholar 

  • Fourmann M, Barret P, Renard M, Pelletier G, Delourme R, Brunel D (1998) The two genes homologous to Arabidopsis FAE1 co-segregate with the two loci governing erucic acid content in Brassica napus. Theor Appl Genet 96:852–858

    Article  CAS  Google Scholar 

  • Grubb CD, Abel S (2006) Glucosinolate metabolism and its control. Trends Plant Sci 11:89–100

    Article  CAS  PubMed  Google Scholar 

  • Halkier BA, Gershenzon J (2006) Biology and biochemistry of glucosinolates. Annu Rev Plant Biol 57:303–333

    Article  CAS  PubMed  Google Scholar 

  • Hasan M, Friedt W, Pons-Kühemann J, Freitag NM, Link K, Snowdon RJ (2008) Association of gene-linked SSR markers to seed glucosinolate content in oilseed rape (Brassica napus ssp. napus). Theor Appl Genet 116:1035–1049

    Article  CAS  PubMed  Google Scholar 

  • Howell PM, Sharpe AG, Lydiate DJ (2003) Homoeologous loci control the accumulation of seed glucosinolates in oilseed rape (Brassica napus). Genome 46:454–460

    Article  CAS  PubMed  Google Scholar 

  • James DW Jr, Lim E, Keller J, Plooy I, Ralston E, Dooner H (1995) Directed tagging of the arabidopsis fatty acid elongation 1 (FAE1) gene with the maize transposon activator. Plant Cell 7:309–319

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jönsson R (1977) Erucic-acid heredity in rapeseed (Brassica napus L. and Brassica campestris L.). Hereditas 86:159–170

    Article  Google Scholar 

  • Jourdren C, Barret P, Horvais R, Foisset N, Delourme R, Renard M (1996) Identification of RAPD markers linked to the loci controlling erucic acid level in rapeseed. Mol Breed 2:61–71

    Article  CAS  Google Scholar 

  • Kondra IP, Stefasom BR (1970) Inheritance of the major glucosinolates of rapeseed (Brassica napus). Canad J Plant Sci 50:643–647

    Article  CAS  Google Scholar 

  • Lander ES, Bostein D (1989) Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lassner M, Lardizabal K, Metz J (1996) A jojoba β-ketoacyl-CoA synthase cDNA complements the canola fatty acid elongation mutation in transgenic plants. Plant Cell 8:281–292

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lemieux B, Miquel M, Somerville C, Browse J (1990) Mutants of Arabidopsis with alterations in seed lipid fatty acid composition. Theor Appl Genet 80:234–240

  • Liu HY, Quampah A, Chen JH, Li JR, Huang ZR, He QL, Shi CH, Zhu SJ (2012) QTL analysis for gossypol and protein contents in upland cottonseeds with two different genetic systems across environments. Euphytica 188(3):453–463

    Article  CAS  Google Scholar 

  • Liu HY, Quampah A, Chen JH, Li JR, Huang ZR, He QL, Zhu SJ, Shi CH (2013) QTL mapping based on different genetic systems for essential amino acid contents in cottonseeds in different environments. PLoS ONE 8(3):e57531. doi:10.1371/journal.pone.0057531

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lühs W, Friedt W (1993) Non-food uses of vegetable oils and fatty acids. In: Murphy DJ (ed) Designer oil crops: breeding, processing and biotechnology. VCH, Cambridge, pp 73–130

    Google Scholar 

  • Magrath R, Mithen R (1993) Maternal effects on the expression of individual aliphatic glucosinolates in seeds and seedlings of Brassica napus. Plant Breed 111:249–252

    Article  CAS  Google Scholar 

  • Mawson R, Heaney RK, Zdunczyk Z, Kozlowska H (1994) Rapeseed meal-glucosinolates and their antinutritional effects Part 4. Goitrogenicity and internal organs abnormalities in animals. Nahrung 38(2):178–191

    Article  CAS  PubMed  Google Scholar 

  • McCouch SR, Cho YG, Yano M, Paul E, Blinstrub M (1997) Report on QTL nomenclature. Rice Genet Newslett 14:11–13

    Google Scholar 

  • Qiu D, Morgan C, Shi J, Long Y, Liu J, Li R, Zhuang X, Wang Y, Tan X, Dietrich E, Weihmann T, Everett C, Vanstraelen S, Beckett P, Fraser F, Trick M, Barnes S, Wilmer J, Schmidt R, Li J, Li D, Meng J, Bancroft I (2006) A comparative linkage map of oilseed rape and its use for QTL analysis of seed oil and erucic acid content. Theor Appl Genet 114:67–80

    Article  CAS  PubMed  Google Scholar 

  • Quijada PA, Udall JA, Lambert B, Osborn TC (2006) Quantatitative trait analysis of seed yield and other complex traits in hybrid spring rapeseed (Brassica napus L.): 1. Identification of genomic regions from winter germplasm. Theor Appl Genet 113:549–561

    Article  CAS  PubMed  Google Scholar 

  • Ramchiary N, Bisht NC, Gupta V, Mukhopadhyay A, Arumugam N, Sodhi YS, Pental D, Pradhan AK (2007) QTL analysis reveals context-dependent loci for seed glucosinolate trait in the oilseed Brassica juncea: importance of recurrent selection backcross scheme for the identification of ‘true’ QTL. Theor Appl Genet 116:77–85

    Article  CAS  PubMed  Google Scholar 

  • Sharpe AG, Lydiate DJ (2003) Mapping the mosaic of ancestral genotypes in a cultivar of oilseed rape (Brassica napus) selected via pedigree breeding. Genome 46:461–468

    Article  CAS  PubMed  Google Scholar 

  • Shi CH, Zhang HZ, Wu JG, Li CT, Ren YL (2003) Genetic and genotype × environment interaction effects analysis for erucic acid content in rapeseed (Brassica napus L.). Euphytica 130(2):249–254

    Article  CAS  Google Scholar 

  • Shi CH, Zhang HZ, Wu JG (2006) Analysis of embryo, cytoplasmic and maternal correlations for quality traits of rapeseed (Brassica napus L.) across environments. J Genet 85(2):147–151

    Article  CAS  PubMed  Google Scholar 

  • Shi CH, Shi Y, Lou XY, Xu HM, Zheng X, Wu JG (2009a) Identification of endosperm and maternal plant QTLs for protein and lysine contents of rice across different environments. Crop Pasture Sci 60(3):295–301

    Article  CAS  Google Scholar 

  • Shi JQ, Li RL, Qiu D, Jiang CC, Long Y, Morgan C, Bancroft I, Zhao JY, Meng JL (2009b) Unraveling the complex trait of crop yield with quantitative trait loci mapping in Brassica napus. Genetics 182:851–861

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thormann CE, Romero J, Mantet J, Osborn TC (1996) Mapping loci controlling the concentrations of erucic and linolenic acids in seed oil of Brassica napus L. Theor Appl Genet 93:282–286

    Article  CAS  PubMed  Google Scholar 

  • Toroser D, Thormann CE, Osborn TC, Mithen R (1995) RFLP mapping of quantitative trait loci controlling seed aliphatic-glucosinolate content in oilseed rape (Brassica napus L.). Theor Appl Genet 91:802–808

    Article  CAS  PubMed  Google Scholar 

  • Uzunova M, Ecke W, Weissleder K, Röbbelen G (1995) Mapping the genome of rapeseed (Brassica napus L.). I. Construction of an RFLP linkage map and localization of QTLs for seed glucosinolates content. Theor Appl Genet 90:194–204

    Article  CAS  PubMed  Google Scholar 

  • Variath MT, Wu JG, Li YX, Chen GL, Shi CH (2009) Genetic analysis for oil and protein contents of rapeseed (Brassica napus L.) at different developmental times. Euphytica 166:145–153

    Article  CAS  Google Scholar 

  • Variath MT, Wu JG, Zhang L, Shi CH (2010) Analysis of developmental genetic effects from embryo, cytoplasm and maternal plant for oleic and linoleic acid contents of rapeseed. J Agr Sci 148:375–391

    Article  CAS  Google Scholar 

  • Wang DL, Zhu J, Li ZK, Paterson AH (1999) Mapping QTLs with epistatic effects and genotype × environment interactions by mixed linear model approaches. Theor Appl Genet 99:1255–1264

    Article  Google Scholar 

  • Wang XF, Liu GH, Yang Q, Hua W, Liu J, Wang HZ (2010) Genetic analysis on oil content in rapeseed (Brassica napus L.). Euphytica 173:17–24

    Article  CAS  Google Scholar 

  • Wu JG, Shi CH, Fan LJ (2002) Calibration optimization for analysing erucic acid and glucosinolate contents of rapeseed by near infrared reflectance spectroscopy (NIRS). J Chin Cer Oils Assoc 17(2):59–62

    CAS  Google Scholar 

  • Wu JG, Shi CH, Zhang HZ (2005) Genetic analysis of embryo, cytoplasmic and maternal effects and their environment interactions for protein content in Brassica napus L. Aust J Agr Res 56(1):69–73

    Article  CAS  Google Scholar 

  • Wu JG, Shi CH, Zhang HZ (2006) Partitioning genetic effects due to embryo, cytoplasm and maternal parent for oil content in oilseed (Brassica napus L.). Genet Mol Biol 29(3):533–538

    Article  Google Scholar 

  • Yang J, Zhu J, Williams RW (2007) Mapping the genetic architecture of complex traits in experimental populations. Bioinformatics 23:1527–1536

    Article  CAS  PubMed  Google Scholar 

  • Zeng ZB (1993) Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci. Proc Natl Acad Sci USA 90:10972–10976

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang SF, Song WG, Ren RJ, Tian BM, Wen YC, Liu JM, Wang JP (1996) Studies on hereditary capacity of quantitative characters and gene effects of CMS double low Brasscica napus. Oil Crops Chin 18(3):1–3

    Google Scholar 

  • Zhang HZ, Shi CH, Wu JG, Ren YL, Li CT, Zhang DQ, Zhang YF (2004a) Analysis of genetic and genotype × environment interaction effects from embryo, cytoplasm and maternal plant for oleic acid content of Brassica napus L. Plant Sci 167:43–48

    Article  CAS  Google Scholar 

  • Zhang HZ, Shi CH, Wu JG, Ren YL, Li CT, Zhang DQ, Zhang YF (2004b) Analysis of genetic effects and heritabilities for linoleic and linolenic acid content of Brassica napus L. across environments. Eur J Lipid Sci Technol 106(8):518–523

    Article  CAS  Google Scholar 

  • Zhang HZ, Shi CH, Wu JG (2011a) Analysis of embryo, cytoplasmic and maternal effects for heterosis of erucic acid and glucosinolates contents in rapeseed (Brassica napus L.). Sci Agr Sin 10(9):1525–1531

    CAS  Google Scholar 

  • Zhang L, Chen GL, Wu JG, Variath MT, Shi CH (2011b) Developmental genetic analysis for crude fiber content and crude ash content of rapeseed meal in two different growing years. J Food Qual 234(4):284–297

    Article  Google Scholar 

  • Zhao J, Meng J (2003) Detection of loci controlling seed glucosinolate content and their association with Sclerotinia resistance in Brassica napus. Plant Breed 122:19–23

    Article  CAS  Google Scholar 

  • Zheng X, Wu JG, Lou XY, Xu HM, Shi CH (2008) The QTL analysis on maternal and endosperm genome and their environmental interactions for characters of cooking quality in rice (Oryza sativa L.). Theor Appl Genet 116(3):335–342

    Article  CAS  PubMed  Google Scholar 

  • Zhu J, Weir BS (1998) Mixed model approaches for genetic analysis of quantitative traits. In: Chen LS, Ruan SG, Zhu J (eds) Proc Inter Conf on Mathematical Biol. World Scientific Publishing Co., Singapore, pp 321–330

    Google Scholar 

Download references

Acknowledgments

The project was financially supported from Zhejiang Provincial Key Laboratory of Crop Germplasm Resources, Foundation for University Key Teacher by the Ministry of Education of China and by the 151 Program for the Talents of Zhejiang Province. We are grateful to A. Quampah for providing good suggestion when revising this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. H. Shi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J.F., Long, Y., Wu, J.G. et al. QTL identification on two genetic systems for rapeseed glucosinolate and erucic acid contents over two seasons. Euphytica 205, 647–657 (2015). https://doi.org/10.1007/s10681-015-1379-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-015-1379-2

Keywords

Navigation