Skip to main content
Log in

Perception, Color, and Realism

  • Original Article
  • Published:
Erkenntnis Aims and scope Submit manuscript

Abstract

One reason philosophers have addressed the metaphysics of color is its apparent relevance to the sciences concerned with color phenomena. In the light of such thinking, this paper examines a pairing of views that has received much attention: color physicalism and externalism about the content of perceptual experience. It is argued that the latter is a dubious conception of the workings of our perceptual systems. Together with flawed appeals to the empirical literature, it has led some philosophers to grant color physicalism a scientific legitimacy it does not merit. This discussion provides a useful entry into broader points pertaining to debates about color realism and the relationship between philosophical theories of color and the relevant empirical literatures. A sketch of a novel form of color realism is offered, as is an example that fills in some details of that sketch.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. I owe this point to an anonymous referee.

  2. Given how the theories are constructed, if the number of required basis functions exceeds three (i.e., the number of cone cell classes), there is no unique solution for the “intrinsic color” specified by a surface’s basis function weights; see Maloney (1999, pp. 399–401).

  3. A similar question arises about the idea that the visual system achieves color constancy by performing—or behaving as though it performs—a matrix inversion to solve for a surface’s basis function weights; see Brown (2003). However, Usui et al. (1992) show that a five-layer neural network can perform an operation equivalent to singular value decomposition.

  4. Wright (submitted a) offers a proposal that effectively moves Romney’s cube-rooting of reflectance spectra inside the visual system.

References

  • Botterell, A. (2003). Colors as explainers? Behavioral and Brain Sciences, 26, 785–786.

    Article  Google Scholar 

  • Brainard, D. (2003). Color appearance and color difference specification. In S. Shevell (Ed.), The science of color. Oxford: Elsevier.

    Google Scholar 

  • Brainard, D., Kraft, J., & Longère, P. (2003). Color constancy: Developing empirical tests of computational models. In R. Mausfeld & D. Heyer (Eds.), Colour perception: Mind and the physical world (pp. 307–328). New York: Oxford University Press.

    Google Scholar 

  • Brenner, E., & Smeets, J. (2001). We are better off without perfect perception. Behavioral and Brain Sciences, 24, 215–216.

    Article  Google Scholar 

  • Brown, R. (2003). Backgrounds and illuminants: The Yin and Yang of color constancy. In R. Mausfeld & D. Heyer (Eds.), Colour perception: Mind and the physical world (pp. 247–272). New York: Oxford University Press.

    Google Scholar 

  • Burns, B., & Shepp, B. (1988). Dimensional interactions and the structure of psychological space: The representation of hue, saturation, and brightness. Perception and Psychophysics, 43, 494–507.

    Google Scholar 

  • Byrne, A., & Hilbert, D. (2003a). Color realism and color science. Behavioral and Brain Sciences, 26, 3–21.

    Google Scholar 

  • Byrne, A., & Hilbert, D. (2003b). Color realism redux. Behavioral and Brain Sciences, 26, 52–63.

    Google Scholar 

  • Byrne, A., & Hilbert, D. (2003c). Color realism revisited. Behavioral and Brain Sciences, 26, 791–794.

    Google Scholar 

  • Chiao, C., Cronin, T., & Osorio, D. (2000). Color signals in natural scenes: Characteristics of reflectance spectra and effects of natural illuminants. Journal of the Optical Society of America A, 17, 218–224.

    Article  Google Scholar 

  • Churchland, P. M. (2007). On the reality (and diversity) of objective colors: How color-qualia space is a map of reflectance-profile space. Philosophy of Science, 74, 119–149.

    Article  Google Scholar 

  • Churchland, P. S., Ramachandran, V. S., & Sejnowski, T. J. (1994). A critique of pure vision. In C. Koch & J. Davis (Eds.), Large scale neuronal theories of the brain. Cambridge, MA: MIT.

    Google Scholar 

  • Dannemiller, J. (1992). Spectral reflectance of natural objects: How many basis functions are necessary? Journal of the Optical Society of America A, 9, 507–515.

    Article  Google Scholar 

  • Deutschlander, M., Phillips, J., & Borland, C. (1999). The case for light dependent magnetic orientation in animals. Journal of Experimental Biology, 202, 891–908.

    Google Scholar 

  • Dominy, N., Lucas, P., Osorio, D., & Yamashita, N. (2001). The sensory ecology of primate food perception. Evolutionary Anthropology, 10, 171–186.

    Article  Google Scholar 

  • Findlay, J., & Gilchrist, I. (2003). Active vision. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Foster, D. (2003). Does colour constancy exist? Trends in Cognitive Sciences, 7, 439–443.

    Article  Google Scholar 

  • Gigerenzer, G., Todd, P., & The ABC Research Group. (1999). Simple Heuristics that make us smart. New York: Oxford University Press.

    Google Scholar 

  • Hansen, T., Olkkonen, M., Walter, S., & Gegenfurtner, K. (2006). Memory modulates color appearance. Nature Neuroscience, 9, 1367–1368.

    Article  Google Scholar 

  • Hardin, C. L. (1988). Color for philosophers: Unweaving the rainbow. Indianapolis: Hackett.

    Google Scholar 

  • Hardin, C. L. (2003). A spectral reflectance doth not a color make. Journal of Philosophy, 100, 191–202.

    Google Scholar 

  • Heijden, A. H. C. van der. (1992). Selective attention in vision. New York: Routledge.

  • Hilbert, D. (1992). What is color vision? Philosophical Studies, 68, 351–370.

    Article  Google Scholar 

  • Hoffman, D. (2009). The interface theory of perception. In S. Dickinson, M. Tarr, A. Leonardis, & B. Schiele (Eds.), Object categorization: Computer and human vision perspectives. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Jakab, Z., & McLaughlin, B. (2003). Why not color physicalism without color absolutism? Behavioral and Brain Sciences, 26, 33–34.

    Article  Google Scholar 

  • Johnson, K., & Wright, W. (2006). Colors as properties of the special sciences. Erkenntnis, 64, 139–168.

    Article  Google Scholar 

  • Köhler, W. (1929/1947). Gestalt psychology. New York: Liveright.

  • Kuehni, R., & Hardin, C. L. (2010). Churchland’s metamers. British Journal for the Philosophy of Science (Forthcoming).

  • Laming, D. (1997). The measurement of sensation. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Lovell, P., Tolhurst, D., Parraga, C., Baddeley, R., Leonards, U., Troscianko, J., et al. (2005). Stability of the color-opponent signals under changes of illuminant in natural scenes. Journal of the Optical Society of America A, 22, 2060–2071.

    Article  Google Scholar 

  • Lycan, W. (2001). The case for phenomenal externalism. In J. Tomberlin (Ed.), Philosophical perspectives, 15. Cambridge: Blackwell.

    Google Scholar 

  • MacLeod, D. (2003). Phenomenology and mechanism. In R. Mausfeld & D. Heyer (Eds.), Colour perception: Mind and the physical world (pp. 431–434). New York: Oxford University Press.

    Google Scholar 

  • Maloney, L. (1986). Evaluation of linear models of surface reflectance spectra with small numbers of parameters. Journal of the Optical Society of America A, 3, 1673–1683.

    Article  Google Scholar 

  • Maloney, L. (1999). Physics-based approaches to modeling surface color perception. In K. Gegenfurtner & L. Sharpe (Eds.), Color vision: From genes to perception. New York: Cambridge University Press.

    Google Scholar 

  • Maloney, L. (2003). Surface color perception in constrained environments. In R. Mausfeld & D. Heyer (Eds.), Colour perception: Mind and the physical world (pp. 279–300). New York: Oxford University Press.

    Google Scholar 

  • Matthen, M. (2005). Seeing, doing, and knowing. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Mausfeld, R. (2002). The physicalistic trap in perception theory. In D. Heyer & R. Mausfeld (Eds.), Perception and the physical world. Chichester: Wiley.

    Google Scholar 

  • Mausfeld, R. (2003). ‘Colour’ as part of the format of two different perceptual primitives: The dual coding of colour. In R. Mausfeld & D. Heyer (Eds.), Colour perception: Mind and the physical world (pp. 381–430). New York: Oxford University Press.

    Google Scholar 

  • Morgan, M., Adam, A., & Mollon, J. D. (1992). Dichromats detect colour-camouflaged objects that are not detected by trichromats. Proceedings of the Royal Society B, 248, 291–295.

    Article  Google Scholar 

  • Nascimento, S. M. C., Foster, D. H., & Amano, K. (2005). Psychophysical estimates of the number of spectral-reflectance basis functions needed to reproduce natural scenes. Journal of the Optical Society of America A, 22, 1017–1022.

    Article  Google Scholar 

  • Oxtoby, E., & Foster, D. (2005). Perceptual limits on low-dimensional models of Munsell reflectance spectra. Perception, 34, 961–966.

    Article  Google Scholar 

  • Poggio, T. (1990). Vision: The ‘other’ face of AI. In K. A. Mohyeldin Said, W. H. Newton-Smith, R. Viale, & K. V. Wilkes (Eds.), Modeling the mind. Oxford: Clarendon.

    Google Scholar 

  • Ramachandran, V. S. (1990). Interactions between motion, depth, color, and form: The utilitarian theory of perception. In C. Blakemore (Ed.), Vision: Coding and efficiency. New York: Cambridge University Press.

    Google Scholar 

  • Reeves, A. (2003). Color as a factor analytic approximation to nature. Behavioral and Brain Sciences, 26, 46.

    Article  Google Scholar 

  • Romney, A. K. (2008). Relating reflectance spectra space to Munsell color appearance space. Journal of the Optical Society of America A, 25, 658–666.

    Article  Google Scholar 

  • Saito, A., Mikami, A., Kawamura, S., Ueno, Y., Hiramatsu, C., Widayati, K., et al. (2005). Advantage of dichromats over trichromats in discrimination of color-camouflaged stimuli in nonhuman primates. American Journal of Primatology, 67, 425–436.

    Article  Google Scholar 

  • Sterelny, K. (2003). Thought in a hostile world. Malden, MA: Blackwell.

    Google Scholar 

  • Stockman, A., & Sharpe, L. (1998). Human cone spectral sensitivities: A progress report. Vision Research, 38, 3193–3206.

    Article  Google Scholar 

  • Teller, D. (2003). Color: A vision scientist’s perspective. Behavioral and Brain Sciences, 26, 48–49.

    Article  Google Scholar 

  • Thompson, E. (2000). Comparative color vision: Quality space and visual ecology. In S. Davis (Ed.), Color perception: Philosophical, psychological, artistic and computational perspectives. Vancouver studies in cognitive science (Vol. 9). Oxford: Oxford University Press.

    Google Scholar 

  • Thornton, W. (1998). How strong metamerism disturbs color spaces. Color Research and Application, 23, 402–407.

    Article  Google Scholar 

  • Thornton, W. (1999). Spectral sensitivities of the normal human visual system, color-matching functions and their principles, and how and why the two sets should coincide. Color Research and Application, 24, 139–156.

    Article  Google Scholar 

  • Trivers, R. (2006). Foreword to the first edition of R. Dawkins, The selfish gene. New York: Oxford University Press.

    Google Scholar 

  • Tweed, D. (2003). Microcosms of the brain: What sensorimotor systems reveal about the mind. New York: Oxford University Press.

    Google Scholar 

  • Tye, M. (2000). Consciousness, color, and content. Cambridge, MA: MIT Press.

    Google Scholar 

  • Tye, M. (2006). The puzzle of true blue. Analysis, 66, 173–178.

    Article  Google Scholar 

  • Usui, S., Nakauchi, S., & Nakano, M. (1992). Reconstruction of Munsell color space by a five-layer neural network. Journal of the Optical Society of America A, 9, 516–520.

    Article  Google Scholar 

  • Van Gulick, R. (2003). Beautiful red squares. Behavioral and Brain Sciences, 26, 50–51.

    Google Scholar 

  • Verhulst, S., & Maes, F. W. (1998). Scotopic vision in colour-blinds. Vision Research, 38, 3387–3390.

    Article  Google Scholar 

  • Wright, W. (2009). The physical unnaturalness of Churchland’s ellipses. Philosophy of Science, 76, 391–403.

    Article  Google Scholar 

  • Wright, W. Prime colors and the hues. (submitted a).

  • Wright, W. Color constancy reconsidered. (submitted b).

  • Zaidi, Q. (1998). Identification of illuminant and object colors: Heuristic-based algorithms. Journal of the Optical Society of America A, 15, 1767–1776.

    Article  Google Scholar 

  • Zaidi, Q. (2001). Color constancy in a rough world. Color Research and Application, 26, S192–S200.

    Article  Google Scholar 

  • Zimbardo, P., & Gerrig, R. (1998/2002). Perception. In D. Levitin (Ed.), Foundations of cognitive psychology. Cambridge, MA: MIT.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wayne Wright.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wright, W. Perception, Color, and Realism. Erkenn 73, 19–40 (2010). https://doi.org/10.1007/s10670-010-9223-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10670-010-9223-5

Keywords

Navigation