Skip to main content

Advertisement

Log in

Scenario-based urban growth allocation in a rapidly developing area: a modeling approach for sustainability analysis of an urban-coastal coupled system

  • Case Study
  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

Being located in an urban-coastal coupled system, the Hashtpar City is one of the most attractive areas for urban construction, tourism, agricultural activities and environmental protection in northern Iran. To resolve the issues between land developers and environmental conservation agencies, we conducted a scenario-based urban growth allocation procedure through the SLEUTH model. The scenarios consisted of ‘business as usual’, ‘managed urban growth’ and ‘environmentally sound growth’ that were introduced by modification of model parameters and exclusion layer. The resultant urban growth arrangements were compared for composition and configuration attributes of landscape patterns. According to the results, the pattern of urbanized lands under managed urban growth option demonstrated better connectivity and compactness of urban patches, while the two other scenarios generated a highly fragmented pattern. The managed urban growth can be considered as a compromised solution between other scenarios since it simultaneously takes into accounts both developers and environment protectors points’ of views. On this basis, a combination of centralized and decentralized urban land use planning is a recommended strategy for our urban-coastal environment to fulfill the purposes of a sustainable development process. The findings of the present article suggest that further expansion of the major urban core in the targeted area should be prohibited since it can lead to an urban patch with considerable physical size and noticeable ecological footprint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdollahi, A. (2008). Ascent and descend of Korganrud City. Talesh Research, 9, 10–17.

    Google Scholar 

  • Al-Ahmadi, K., Heppenstall, A. J., Hogg, J., & See, L. (2009). A fuzzy cellular automata urban growth model (FCAUGM) for the city of Riyadh, Saudi Arabia. Part 1: Model structure and validation. Applied Spatial Analysis and Policy, 2(1), 65–83.

    Article  Google Scholar 

  • Al-ahmadi, K., See, L., Heppenstall, A., & Hogg, J. (2008). Calibration of a fuzzy cellular automata model of urban dynamics in Saudi Arabia. Ecological Complexity, 6(2), 80–101.

    Article  Google Scholar 

  • Al-shalabi, L., Billa, L., Pradhan, B., Mansor, S., & Al-sharif, A. A. A. (2012). Modelling urban growth evolution and land-use changes using GIS based cellular automata and SLEUTH models: The case of Sana’a metropolitan city, Yemen. Earth Sciences, 70(1), 425–437.

    Article  Google Scholar 

  • Asgarian, A., Amiri, B. J., & Sakieh, Y. (2015). Assessing the effect of green cover spatial patterns on urban land surface temperature using landscape metrics approach. Urban Ecosystems, 18(1), 209–222.

    Article  Google Scholar 

  • Barredo, J. I., Demicheli, L., Lavalle, C., Kasanko, M., & McCormick, N. (2004). Modelling future urban scenarios in developing countries: An application case study in Lagos, Nigeria. Environment and Planning B: Planning and Design, 31(1), 65–84.

    Article  Google Scholar 

  • Barredo, J. I., Kasanko, N., McCormick, M., & Lavalle, C. (2003). Modelling dynamic spatial process: Simulation of urban future scenarios through cellular automata. Landscape and Urban Planning, 64(3), 145–160.

    Article  Google Scholar 

  • Batty, M. (2005). Agents, cells, and cities: New representational models for simulating multiscale urban dynamics. Environment and Planning A, 37(8), 1373–1394.

    Article  Google Scholar 

  • Batty, M., & Xie, Y. (1994). From cells to cities. Environment and Planning B: Planning and Design, 21(7), 31–48.

    Article  Google Scholar 

  • Bihamta, N., Soffianian, A., Fakheran, S., & Gholamalifard, M. (2014). Using the SLEUTH urban growth model to simulate future urban expansion of the Isfahan metropolitan area, Iran. Journal of the Indian Society of Remote Sensing. doi:10.1007/s12524-014-0402-8.

    Google Scholar 

  • Botequila, A. L., Miller, J., Ahem, J., & Mcgarical, K. (2006). Measuring landscapes: A planner’s handbook. Washington: Island Press. 272p.

    Google Scholar 

  • Candau, J. T. (2002). Temporal calibration sensitivity of the SLEUTH urban growth model. M.Sc Theses. Santa Barbara University. 116 pp.

  • Cecchini, A., & Rinaldi, E. (1999). The multi-cellular automaton: A tool to build more sophisticated models. A theoretical foundation and a practical implementation. In P. Rizzi (Ed.), Computer in urban planning and urban management 6th international conference. Milano, Franco Angeli.

  • Chaudhuri, G., & Clarke, K. C. (2012). How does land use policy modify urban growth? A case study of Italo-Slovenian border. Land Use Science, 8(4), 443–465.

    Article  Google Scholar 

  • Chaudhuri, G., & Clarke, K. C. (2013). Temporal accuracy in urban growth forecasting: A study using the SLEUTH model. Transactions in GIS, 18(2), 302–320.

    Article  Google Scholar 

  • Cisin-Sain, B., & Knecht, R. W. (2001). Integrated coastal and ocean management: Concepts and experience. Washington, DC: Island Press.

    Google Scholar 

  • Clarke, K. C., & Gaydos, L. J. (1998). Loose-coupling a cellular automata model and GIS: Long-term urban growth prediction for San Francisco and Washington/Baltimore. International Journal of Geographical Information Science, 12(7), 699–714.

    Article  CAS  Google Scholar 

  • Clarke, K. C., Gazulis, N., Dietzel, C. K., & Goldstein, N. C. (2007). A decade of SLEUTHing: Lessons learned from applications of a cellular automaton land-use change model. In P. Fisher (Ed.), Classics from IJGIS. Twenty years of the international journal of geographical information systems and science (pp 413–425). Boca Raton, FL: Taylor and Francis.

  • Clarke, K. C., Hoppen, S., & Gaydos, L. (1997). A self-modifying cellular automaton model of historical urbanization in the San Francisco Bay area. Environment and Planning B: Planning and Design, 24(2), 247–261.

    Article  Google Scholar 

  • Congalton, R. G. (1991). A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment, 37(1), 35–46.

    Article  Google Scholar 

  • Dezhkam, S., Amiri, B. J., Darvishsefat, A. A., & Sakieh, Y. (2013). Simulating the urban growth dimensions and scenario prediction through sleuth model: A case study of Rasht County, Guilan, Iran. GeoJournal, 79(5), 591–604.

    Article  Google Scholar 

  • Dietzel, C., & Clarke, K. C. (2007). Toward optimal calibration of the SLEUTH land use change model. Transactions in GIS, 11(1), 29–45.

    Article  Google Scholar 

  • Dietzel, C., Oguz, H., Hemphill, J. J., Clarke, K. C., & Gazulis, N. (2005). Diffusion and coalescence of the Houston Metropolitan Area: Evidence supporting a new urban theory. Environment and Planning B: Planning and Design, 32(2), 231–246.

    Article  Google Scholar 

  • Douglas, I., Goode, D., Houck, M., & Wang, R. (2011). The Routledge handbook of urban ecology. London: Routledge.

    Google Scholar 

  • Eastman, R. (2009). Idrisi Taiga Version. 16.01 Clark Laboratories, Clark University, Worcester, MA.

  • Echenique, M. (2004). Econometric models of land use and transportation. In D. A. Hensher & K. J. Button (Eds.), Transport geography and spatial systems, handbook 5 of handbook in transport (pp. 185–202). Kidlington, UK: Pergamon/Elsevier Science.

    Chapter  Google Scholar 

  • Engelen, G., White, R., & Uljee, I. (1997). Integrating constrained cellular automata models, GIS and decision support tools for urban planning and policy making. In H. P. J. Timmermans (Ed.), Decision support systems in urban planning (pp. 125–155). London: E and FN Spon.

    Google Scholar 

  • Feng, H. H., Liu, H. P., & Lü, Y. (2012). Scenario prediction and analysis of urban growth using SLEUTH model. Pedosphere, 22(2), 206–216.

    Article  Google Scholar 

  • Feng, Y., Liu, Y., Tong, X., Liu, M., & Deng, S. (2011). Modeling dynamic urban growth using cellular automata and particle swarm optimization rules. Landscape and Urban Planning, 102(3), 188–196.

    Article  Google Scholar 

  • Gandhi, S. I., & Suresh, V. M. (2012). Prediction of urban sprawl in Hyderabad city using spatial model, remote sensing and GIS techniques geography. Indian Journal of Scientific Researches, ISSN No: 2277–8179.

  • Geurs, K. T., & Wee, B. V. (2004). Accessibility evaluation of land-use and transport strategies: Review and research directions. Transport Geography, 12(2), 127–140.

    Article  Google Scholar 

  • Goodarzi, M. S. (2012). Landscape assessment for environmental conservation and priority selection regarding urban growth trend (case study: West of Guilan Province). Dissertation, University of Tehran.

  • Grimm, N. B., Faeth, S. H., Golubiewski, N. E., Redman, C. L., Wu, J., Bai, X., & Briggs, J. M. (2008). Global change and the ecology of cities. Science, 319(5864), 756–760.

    Article  CAS  Google Scholar 

  • Hasani Sangani, M., Amiri, B. J., Alizadeh Shabani, A., Sakieh, Y., & Ashrafi, S. (2014). Modeling relationships between catchment attributes and river water quality in southern catchments of the Caspian Sea. Environmental Science and Pollution Researche, 22(7), 4985–5002.

    Article  Google Scholar 

  • He, C., Okada, N., Zhang, Q., Shi, P., & Li, J. (2008). Modelling dynamic urban expansion processes incorporating a potential model with cellular automata. Landscape and Urban Planning, 86(1), 79–91.

    Article  Google Scholar 

  • Herold, M., Goldstein, N. C., & Clarke, K. C. (2003). The spatiotemporal form of urban growth: Measurement, analysis and modeling. Remote Sensing of Environment, 86(3), 286–302.

    Article  Google Scholar 

  • Iranian Statistics Center. (2010). General census of population and housing of Hahtpar City. Tehran: Iranian Statistics Center Publication.

  • Jaafari, S., Sakieh, Y., Shabani, A. A., Danehkar, A., & Nazarisamani, A. (2015). Landscape change assessment of reservation areas using remote sensing and landscape metrics (case study: Jajroud reservation, Iran). Environment, Development and Sustainability. doi:10.1007/s10668-015-9712-4.

    Google Scholar 

  • Jaeger, J. A. G., Bertiller, R., Schewick, C., & Kienast, F. (2010). Suitability criteria for measures of urban sprawl. Ecological Indicators, 10(2), 397–406.

    Article  Google Scholar 

  • Jafarnezhad, J., Salmanmahiny, A., & Sakieh, Y. (2015). Subjectivity versus objectivity: Comparative study between Brute Force method and Genetic Algorithm for calibrating the SLEUTH urban growth model. Urban Planning and Development. doi:10.1061/(ASCE)UP.1943-5444.0000307.

    Google Scholar 

  • Jantz, C. A., Goetz, S. J., Donato, D., & Claggett, P. (2010). Designing and implementing a regional urban modeling system using the SLEUTH cellular urban model. Computers, Environment and Urban Systems, 34(1), 1–16.

    Article  Google Scholar 

  • Jantz, C. A., Goetz, S. J., & Shelley, M. K. (2003). Using the SLEUTH urban growth model to simulate the impacts of future policy scenarios on urban land use in the Baltimore-Washington metropolitan area. Environment and Planning B: Planning and Design, 31(2), 251–271.

    Article  Google Scholar 

  • Jokar, J., Helbich, M., Kainz, W., & Boloorani, A. D. (2013). Integration of logistic regression, Markov chain and cellular automata models to simulate urban expansion. International Journal of Applied Earth Observation and Geoinformation, 21, 265–275.

    Article  Google Scholar 

  • Leao, S., Bishop, I., & Evans, D. (2004). Simulating urban growth in a developing nation’s region using a CA-based model. Urban Planning and Development, 130(3), 145–158.

    Article  Google Scholar 

  • Li, X., & Yeh, A. G. O. (2002). Neural-network-based cellular automata for simulating multiple land use changes using GIS. International Journal of Geographical Information Science, 16(4), 323–343.

    Article  Google Scholar 

  • Liu, X., & Andersson, C. (2004). Assessing the impact of temporal dynamics on land-use change modeling. Computers, Environment and Urban Systems, 28(1–2), 107–124.

    Article  Google Scholar 

  • Liu, X., Li, X., Shi, X., Wu, S., & Liu, T. (2007). Simulating complex urban development using kernel-based non-linear cellular automata. Ecological Modelling, 211(1–2), 169–181.

    Google Scholar 

  • Lu, T., Man-chun, L., Yong-xue, L., Wei, W., & Wei, H. (2009). Study of urban expansion simulation on the condition of ecological environment protection: A case study in Dianchi Basin in Kunming. Joint Urban Remote Sensing Event, 2, 1–6.

    CAS  Google Scholar 

  • Mahiny, A. S., & Clarke, K. C. (2012). Guiding SLEUTH land-use/land-cover change modeling using multicriteria evaluation: towards dynamic sustainable land-use planning. Environment and Planning B: Planning and Design, 39(5), 925–944.

    Article  Google Scholar 

  • Mahiny, A. S., & Clarke, K. C. (2013). Simulating hydrologic impacts of urban growth using SLEUTH, multi criteria evaluation and runoff modeling. Environmental Informatics, 22(1), 27–38.

    Article  Google Scholar 

  • Mahiny, A. S., & Gholamalifard, M. (2007). Dynamic spatial modeling of urban growth through cellular automata in a GIS environment. International Journal of Environmental Research, 1(3), 272–279.

    Google Scholar 

  • Maithani, S. (2010). Application of cellular automata and GIS techniques in urban growth modelling: A new perspective. India Journal, 7, 36–49.

    Google Scholar 

  • McGarigal, K., Cushman, S. A., & Ene, E. (2012). FRAGSTATS v4: Spatial pattern analysis program for categorical and continuous maps. Computer software program produced by the authors at the University of Massachusetts, Amherst. http://www.umass.edu/landeco/research/fragstats/fragstats.html

  • McGarigal, K., & Marks, B. J. (1995). FRAGSTATS: Spatial pattern analysis program for quantifying landscape structure. USDA Forest Service.

  • Newman, P., Beatley, T., & Boyer, H. (2009). Resilient cities: Responding to peak oil and climate change. Washington, DC: Island Press.

    Google Scholar 

  • Niemela, J. (2011). Urban ecology: Patterns, processes, and applications (p. 374). Oxford: Oxford University Press.

    Book  Google Scholar 

  • Norman, L. M., Feller, M., & Phillip Guertin, D. (2009). Forecasting urban growth across the United States-Mexico border. Computers, Environment and Urban Systems, 33(2), 150–159.

    Article  Google Scholar 

  • Norman, L. M., Feller, M., & Villarreal, M. L. (2012). Developing spatially explicit footprints of plausible land-use scenarios in the Santa Cruz Watershed, Arizona and Sonora. Landscape and Urban Plannig, 107(3), 225–235.

    Article  Google Scholar 

  • O’Neill, R. V., Riitters, K. H., Wickham, J. D., & Jones, K. B. (1988). Landscape pattern metrics and regional assessment. Ecosystem Health, 5(4), 225–233.

    Article  Google Scholar 

  • Pickett, S. T. A., Cadenasso, M. L., Grove, J. M., Boone, C. G., Groffman, P. M., Irwin, E., et al. (2011). Urban ecological systems: Scientific foundations and a decade of progress. Environmental Managment, 92(3), 331–362.

    CAS  Google Scholar 

  • Pickett, S. T. A., Cadenasso, M. L., Grove, J. M., Nilon, C. H., Pouyat, R. V., Zipperer, W. C., & Costanza, R. (2001). Urban ecological systems: Linking terrestrial ecological, physical, and socioeconomic components of metropolitan areas. Annual Review of Ecology Evolution and Systematics, 32, 127–157.

    Article  Google Scholar 

  • Pontius, R. G, Jr, & Schneider, L. C. (2001). Land-cover change model validation by an ROC method for the Ipswich watershed, Massachusetts, USA. Agriculture, Ecosystems & Environment, 85(1–3), 239–248.

    Article  Google Scholar 

  • Portugali, J. (2000). Self-organization and the city. Berlin: Springer.

    Book  Google Scholar 

  • Pourebrahim, S., Hadipour, M., & Mokhtar, M. B. (2011). Integration of spatial analysis for land use planning in coastal areas; case of Kuala District, Selangor, Malaysia. Landscape and Urban Planning, 101(1), 84–97.

    Article  Google Scholar 

  • Rafiee, R., Mahiny, A. S., Khorasani, N., Darvishsefat, A. A., & Danekar, A. (2009). Simulating urban growth in Mashad City, Iran through the SLEUTH model (UGM). Cities, 26, 19–26.

    Article  Google Scholar 

  • Rienow, A., & Goetzke, R. (2014). Supporting SLEUTH—Enhancing a cellular automata with support vector machines for urban growth modeling. Computers, Environment and Urban Systems. doi:10.1016/j.compenvurbsys.2014.05.001.

    Google Scholar 

  • Sakieh, Y. (2013). Urban sustainability analysis through the SLEUTH urban growth model and multi criteria evaluation: A case study of Karaj City. Dissertation, University of Tehran.

  • Sakieh, Y., Amiri, B. J., Danekar, A., Feghhi, J., & Dezhkam, S. (2014a). Scenario-based evaluation of urban development sustainability: An integrative modeling approach to compromise between urbanization suitability index and landscape pattern. Environment, Development and Sustainability, 17(6), 1343–1365.

    Article  Google Scholar 

  • Sakieh, Y., Amiri, B. J., Danekar, A., Feghhi, J., & Dezhkam, S. (2014b). Simulating urban expansion and scenario prediction using a cellular Automata urban growth model, SLEUTH, through a case study of Karaj City, Iran. Housing and Built Environment, 30(4), 591–611.

    Article  Google Scholar 

  • Sakieh, Y., Gholipour, M., & Salmanmahiny, A. (2016). An integrated spectral-textural approach for environmental change monitoring and assessment: Analyzing the dynamics of green covers in a highly developing region. Environmental Monitoring and Assessment. doi:10.1007/s10661-016-5206-6.

    Google Scholar 

  • Sakieh, Y., & Salmanmahiny, A. (2016a). Performance assessment of geospatial simulation models of land-use change—a landscape metric-based approach. Environmental Monitoring and Assessment. doi:10.1007/s10661-016-5179-5.

    Google Scholar 

  • Sakieh, Y., & Salmanmahiny, A. (2016b). Treating a cancerous landscape: Implications from medical sciences for urban and landscape planning in a developing region. Habitat International. doi:10.1016/j.habitatint.2016.03.008.

  • Sakieh, Y., Salmanmahiny, A., Jafarnezhad, J., Mehri, A., Kamyab, H., & Galdavi, S. (2015). Evaluating the strategy of decentralized urban land-use planning in a developing region. Land Use Policy, 48, 534–551.

    Article  Google Scholar 

  • Santé, I., García, A. M., Miranda, D., & Crecente, R. (2010). Cellular automata model for the simulation of real-world urban processes: A review and analysis. Landscape and Urban Planning, 96(2), 108–122.

    Article  Google Scholar 

  • Schneider, A., Friedl, M. A., & Potere, D. (2010). Mapping global urban areas using MODIS 500-m data: New methods and datasets based on ‘urban ecoregions’. Remote Sensing of Environment, 114(8), 1733–1746.

    Article  Google Scholar 

  • Silva, E. A., & Clarke, K. C. (2002). Calibration of the SLEUTH urban growth model for Lisbon and Porto, Portugal. Computers, Environment and Urban Systems, 26, 525–552.

    Article  Google Scholar 

  • Silva, E. A., & Clarke, K. C. (2005). Complexity, emergence and cellular urban models: Lessons learned from applying SLEUTH to two Portuguese metropolitan areas. European Planning Studies, 13(6), 93–115.

    Article  Google Scholar 

  • Singh, A. K. (2003). Modeling landuse landcover changes using cellular automata in geo-spatial environment (p. 58). Dissertation, ITC, Netherland. Spatial Analysis (CASA), London.

  • Soares-Filho, B. S., Cerqueira, G. C., & Pennachin, C. L. (2002). DINAMICA—a stochastic cellular automata model designed to simulate the landscape dynamics in an Amazonian colonization frontier. Ecological Modelling, 154(3), 217–235.

    Article  Google Scholar 

  • Stevens, D., Dragicevic, S., & Rothley, K. (2007). iCity: A GISeCA modelling tool for urban planning and decision making. Environmental Modelling and Software, 22(6), 761–773.

    Article  Google Scholar 

  • Straatman, B., White, R., & Engelen, G. (2004). Towards an automatic calibration procedure for constrained cellular automata. Computers, Environment and Urban Systems, 28(1–2), 149–170.

    Article  Google Scholar 

  • Sullivan, D. O., & Torrens, P. M. (2000). Cellular models of urban systems. CASA working paper series, paper 22. www.casa.ucl.uk. Accessed 01 Aug 2010.

  • Syphard, A. D., Clarke, K. C., & Franklin, J. (2005). Using a cellular automaton model to forecast the effects of urban growth on habitat pattern in southern California. Ecological Complexity, 2(2), 185–203.

    Article  Google Scholar 

  • Turner, R. K., Subak, S., & Adger, W. N. (2004). Pressures, trends, and impacts in coastal interactions between socioeconomic and natural systems zones. Environmental Management, 20(2), 159–173.

    Article  Google Scholar 

  • Varanka, D. (2001). Modeling urban expansion in the Philadelphia metropolitan area. http://mcmcweb.er.usgs.gov/phil/modeling.html. Accessed 26 March 2010.

  • Verburg, P. H., Nijs, T. C. M. D., Eck, J. R. V., Visser, H., & Jong, K. D. (2004). A method to analyse neighbourhood characteristics of land use patterns. Public Health, 28(6), 667–690.

    Google Scholar 

  • Verburg, P. H., & Overmars, K. P. (2009). Combining top-down and bottom-up dynamics in land use modeling: Exploring the future of abandoned farmlands in Europe with the Dyna-CLUE model. Landscape Ecology, 24(9), 1167–1181.

    Article  Google Scholar 

  • Verburg, P. H., Soepboer, W., Veldkamp, A., Limpiada, R., Espaldon, V., & Mastura, S. S. A. (2002). Modeling the spatial dynamics of regional land use: The CLUE-S model. Environmental Management, 30(3), 391–405.

    Article  Google Scholar 

  • Vliet, J. V., White, R., & Dragicevic, S. (2008). Modeling urban growth using a variable grid cellular automaton. Computers, Environment and Urban Systems, 33(1), 35–43.

    Article  Google Scholar 

  • Wang, H., He, S., Liu, X., Dai, L., Pan, P., Hong, S., & Zhang, W. (2012). Simulating urban expansion using a cloud-based cellular automata model: A case study of Jiangxia, Wuhan, China. Landscape and Urban Planning, 110, 99–112.

    Article  Google Scholar 

  • White, R., & Engelen, G. (1997). Cellular automata as the basis of integrated dynamic regional modeling. Environment and Planning B: Planning and Design, 24(2), 235–246.

    Article  Google Scholar 

  • White, R., Engelen, G., & Uljee, I. (1997). The use of constrained cellular automata for high-resolution modelling of urban land-use dynamics. Environment and Planning B: Planning and Design, 24(3), 323–343.

    Article  Google Scholar 

  • Wu, F. (1996). Changes in the structure of public housing provision in urban China Urban Studies. Urban Studies, 33(9), 1601–1627.

    Article  Google Scholar 

  • Wu, J. G. (2008). Making the case for landscape ecology: An effective approach to urban sustainability. Landscape Journal, 27, 41–50.

    Article  Google Scholar 

  • Wu, J. G. (2014). Urban ecology and sustainability: The state-of-the-science and future directions. Landscape Urban Planning, 125, 209–221.

    Article  Google Scholar 

  • Wu, J. G., Buyantuyev, A., Jenerette, G. D., Litteral, J., Neil, K., & Shen, W. (2011). Quantifying spatiotemporal patterns and ecological effects of urbanization: A multiscale landscape approach. In M. Richte & U. Weiland (Eds.), Applied urbanecology: A global framework (pp. 35–53). Oxford: Blackwell.

    Google Scholar 

  • Wu, X., Hu, Y., He, H. S., Bu, R., Onsted, J., & Xi, F. (2009). Performance evaluation of the SLEUTH Model in the Shenyang metropolitan area of northeastern China. Environmental Modeling and Assessment, 14(2), 221–230.

    Article  CAS  Google Scholar 

  • Wu, F., & Webster, C. J. (1998). Simulation of land development through the integration of cellular automata and multi-criteria evaluation. Environment and Planning B: Planning and Design, 25(1), 103–126.

    Article  Google Scholar 

  • Xi, F., He, H. S., Clarke, K. C., Hu, Y., Wu, X., Liu, M., et al. (2012). The potential impacts of sprawl on farmland in Northeast China—A new strategy for rural development. Landscape and Urban Planning, 104(1), 34–46.

    Google Scholar 

  • Xi, F., He, H. S., Hu, Y., Bu, R., Chang, Y., Wu, X., et al. (2009). Simulating the impacts of ecological protection policies on urban land use sustainability in Shenyang-Fushun, China. International Journal of Urban Sustainable Development, 1(1–2), 111–127.

    Google Scholar 

  • Yang, Q., Li, X., & Shi, X. (2008). Cellular automata for simulation land use changes based on support vector machines. Computers & Geosciences, 34(6), 592–602.

    Article  Google Scholar 

  • Yang, X., & Lo, C. P. (2003). Modeling urban growth and landscape changes in the Atlanta metropolitan area. International Journal of Geographical Information Science, 17(5), 463–488.

    Article  Google Scholar 

  • Zander, P., & Kachele, H. (1999). Modelling multiple objectives of land use for sustainable development. Agricultural Systems, 59(3), 311–325.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Professor K. C. Clarke, who kindly answered to the questions on implementing the SLEUTH model. The authors also appreciate the anonymous reviewers for their useful and constructive comments on this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Sheikh Goodarzi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goodarzi, M.S., Sakieh, Y. & Navardi, S. Scenario-based urban growth allocation in a rapidly developing area: a modeling approach for sustainability analysis of an urban-coastal coupled system. Environ Dev Sustain 19, 1103–1126 (2017). https://doi.org/10.1007/s10668-016-9784-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-016-9784-9

Keywords

Navigation