Skip to main content

Advertisement

Log in

A Fuzzy Cellular Automata Urban Growth Model (FCAUGM) for the City of Riyadh, Saudi Arabia. Part 1: Model Structure and Validation

  • Published:
Applied Spatial Analysis and Policy Aims and scope Submit manuscript

Abstract

Managing and modelling urban growth is a multi-faceted problem. Cities are now recognised as complex systems through which non-linear processes, emergence and self-organisation occur. The design of a system that can handle these complexities is a challenging prospect. This paper presents an urban planning application for the city of Riyadh, Saudi Arabia. At the core of the application is a Fuzzy Cellular Automata Urban Growth Model (FCAUGM) which is generally capable of simulating the complexities of urban growth. The chief components of the model are outlined and quantitative and qualitative methods of validation are described. The results of the validation show that the model is to a large extent successful at replicating the spatial patterns over time for Riyadh although closer examination reveals several minor anomalies which cannot readily be explained. The authors conclude that the model offers significant benefits for simulating urban growth and change, for urban planning and decision-support for policy makers and others, but further research will be necessary on methods of validating and interpreting the detailed results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Al-Ahmadi, K., See, L. M., Heppenstall, A. J. & Hogg, J. (2008a). Calibration of a fuzzy cellular automata model of urban dynamics in Saudi Arabia. Ecological Complexity. doi:10.1016/j.ecocom.2008.09.004.

  • Al-Ahmadi, K., Heppenstall, A. J., Hogg, J. & See, L. M., (2008b). A Fuzzy Cellular Automata Urban Growth Model (FCAUGM) for the City of Riyadh, Saudi Arabia. Part 2: Scenario Testing. Applied Spatial Analysis and Policy Journal. doi:10.1007/s12061-008-9019-z.

  • Allen, P. M. (1997). Cities and regions as self-organizing systems: Models of complexity. Amsterdam: Gordon and Breach Science.

    Google Scholar 

  • Allen, P., & Sanglier, M. (1981). Urban evolution, self-organization, and decision making. Environment and Planning A, 13, 169–183.

    Article  Google Scholar 

  • Almeida, C., Monteiro, A., Camara, G., Soares-Filho, B., Cerqueira, G., Pennachin, C. & Batty, M. (2002). Empiricism and stochastics in cellular automaton modelling of urban land use dynamics. University College London, working paper 42, URL: http://www.casa.ucl.ac.uk/publications/workingPaperDetail.asp?ID=42, [Accessed 2006].

  • Arriyadh Development Authority (ADA). (2004). Arriyadh metropolitan strategy plan: Part 2 state of the city, background and issues. Riyadh, Saudi Arabia.

  • Barredo, J., Kasanko, M., McCormick, N., & Lavalle, C. (2003). Modelling dynamic spatial processes: Simulation of urban future scenarios through cellular automata. Landscape and Urban Planning, 64, 145–160.

    Article  Google Scholar 

  • Batty, M. (1974). Spatial entropy. Geographical Analysis, 6, 1–31.

    Google Scholar 

  • Batty, M. (1997). The computable city. International Planning Studies, 2, 155–173.

    Article  Google Scholar 

  • Batty, M. (2003) The emergence of cities: Complexity and urban dynamics. Centre for Advanced Spatial Analysis, University Collage London, working paper 64, URL: http://www.casa.ucl.ac.uk/publications/workingPaperDetail.asp?ID=64, [Accessed 2006].

  • Batty, M. (2005). Cities and complexity: Understanding cities through cellular automata, agent-based models, and fractals. Cambridge: MA: MIT Press.

    Google Scholar 

  • Batty, M. (2007) Complexity in city systems: Understanding, evolution and design. Centre for Advanced Spatial Analysis, University Collage London, working paper 117, URL: http://www.casa.ucl.ac.uk/publications/workingPaperDetail.asp?ID=117, [Accessed 2007].

  • Batty, M., & Longley, P. (1989). Urban growth and form: Scaling, fractal geometry and diffusion-limited aggregation. Environment and Planning A, 21, 1447–1472.

    Article  Google Scholar 

  • Batty, M., & Xie, Y. (1994). From cells to cities. Environment and Planning B, 21, 531–548.

    Google Scholar 

  • Benenson, I., & Torrens, P. M. (2004). Geosimulation automata-based modelling of urban phenomena. UK: John Wiley and Sons Ltd.

    Google Scholar 

  • Benenson, I., Omer, I., & Hatna, E. (2002). Entity-based modelling of urban residential dynamics: The case of Yaffo, Tel Aviv. Environment and Planning B, 29, 491–512.

    Article  Google Scholar 

  • Besussi, E., Cecchini, A., & Rinaldi, E. (1998). The diffused city of the Italian north-east: identification of urban dynamics using cellular automata urban models. Computers, Environment and Urban Systems, 22, 497–523.

    Article  Google Scholar 

  • Caruso, G., Peeters, D., Cavailhes, J., & Rounsevell, M. (2007). Spatial Configurations in a periurban city. A cellular automata-based microeconomic model. Regional Science and Urban Economics, 37, 542–567.

    Article  Google Scholar 

  • Cecchini, A. (1996). Urban modelling by means of cellular automata: generalized urban automata with the help on-line (AUGH) model. Environment and Planning B, 23, 721–732.

    Article  Google Scholar 

  • Cheng, J., & Masser, I. (2004). Understanding spatial and temporal process of urban growth: cellular automata modelling. Environment and Planning B, 31, 167–194.

    Article  Google Scholar 

  • Clarke, K. C., & Gaydos, L. J. (1998). Loose-coupling a cellular automaton model and GIS: Long-term urban growth prediction for San Francisco and Washington/Baltimore. International Journal of Geographical Information Science, 12, 699–714.

    Article  Google Scholar 

  • Clarke, K. C., Hoppen, S., & Gaydos, L. J. (1997). A self-modifying cellular automaton model of historical urbanization in the San Francisco Bay area. Environment and Planning B, 24(2), 247–261.

    Article  Google Scholar 

  • Couclelis, H. (1985). Cellular worlds: A framework for modelling micro-macro dynamics. Environment and Planning A, 17, 585–596.

    Article  Google Scholar 

  • Couclelis, H. (1997). From cellular automata to urban models: New principles for model development and implementation. Environment and Planning B, 24, l65–174.

    Google Scholar 

  • Franceschetti, G., Marano, S., Pasquino, N., & Pinto, I. (2000). Model for urban and indoor cellular propagation using percolation theory. Physical Review E, 61, 2228–2231.

    Article  Google Scholar 

  • Fritz, S., & See, L. (2005). Comparison of land cover maps using fuzzy agreement. International Journal of Geographical Information Science, 19, 787–807.

    Article  Google Scholar 

  • Jantz, C., & Goetz, S. (2005). Analysis of scale dependencies in an urban land-use-change model. International Journal of Geographical Information Science, 19, 271–241.

    Article  Google Scholar 

  • Lau, K. H., & Kam, B. H. (2005). A cellular automata model for urban land-use simulation. Environment and Planning B, 32, 247–263.

    Article  Google Scholar 

  • Lee, D. R., & Sallee, G. T. (1970). A method of measuring shape. The Geographical Review, 60, 555–563.

    Article  Google Scholar 

  • Li, X., & Yeh, A. G. (2000). Modelling sustainable urban development by the integration of constrained cellular automata and GIS. International Journal of Geographical Information Systems, 14, l31–152.

    Google Scholar 

  • Li, X., & Yeh, A. G. (2001). Calibration of cellular automata by using neural networks for the simulation of complex urban system. Environment and Planning A, 33, 1445–1462.

    Article  Google Scholar 

  • Li, X., & Yeh, A. G. (2002). Neural-network based cellular automata for simulating multiple land use changes using GIS. International Journal of Geographical Information Science, 16, 323–343.

    Article  Google Scholar 

  • Liu, Y., & Phinn, S. R. (2003). Modelling urban development with cellular automata incorporating fuzzy-set approaches. Computer, Environment and Urban Systems, 27, 637–658.

    Article  Google Scholar 

  • Makse, H., Havlin, S., & Stanley, H. (1995). Modelling urban growth patterns. Nature, 377, 608–612.

    Article  Google Scholar 

  • Openshaw, S., & Openshaw, C. (1997). Artificial intelligence in geography. New York: Wiley.

    Google Scholar 

  • Pontius, R., Huffaker, D., & Denman, K. (2004). Useful techniques of validation for spatially explicit land-change model. Ecological Modelling, 179, 445–461.

    Article  Google Scholar 

  • Portugali, J. (2000). Self-Organization and the city. Berlin: Springer-Verlag.

    Google Scholar 

  • Rykiel, E. J. (1996). Testing ecological models: The meaning of validation. Ecological Modelling, 90, 229–244.

    Article  Google Scholar 

  • Soares-Filho, B., Coutinho-Cerqueira, G., & Lopes-Pennachin, C. (2002). DINAMICA— stochastic cellular automata model designed to simulate the landscape dynamics in an Amazonian colonization frontier. Ecological Modelling, 154, 217–235.

    Article  Google Scholar 

  • Sun, Z. (2005). LEAM: Extended cellular automata model of urban land-use change. In the Proceedings of the 8th International Conference on GeoComputation, University of Michigan,USA. URL: http://www.geocomputation.org/2005/Sun.pdf, [Accessed 2005].

  • Tobler, W. (1979). Cellular geography. In S. Gale, & G. Olsson (Eds.), Philosophy in Geography (pp. 379–386). Dordrecht, The Netherlands: Reidel.

    Google Scholar 

  • Torrens, P. M. (2000a). How cellular models of urban systems work. CASA Centre for Advanced Spatial Analysis, University College London, working paper 28, URL: http://www.casa.ucl.ac.uk/publications/workingPaperDetail.asp?ID=28, [Accessed 2005].

  • Torrens, P. M. (2000b). How land-use transport models work. Centre for Advanced Spatial Analysis, University College London, working paper 20, URL: http://www.casa.ucl.ac.uk/publications/workingPaperDetail.asp?ID=20, [Accessed 2005].

  • Torrens, P. M., & Benenson, I. (2005). Geographic automata systems. International Journal of Geographical Information Science, 19, 385–412.

    Article  Google Scholar 

  • Torrens, P. M., & O’Sullivan, D. (2001). Cellular automata and urban simulation: Where do we go from here? Environment and Planning B, 28, 163–168.

    Article  Google Scholar 

  • Verburg, P. H. (2004). Land use change modelling: Current practice and research priorities. GeoJournal, 61, 309–324.

    Article  Google Scholar 

  • Walsh, S. J., Entwisle, B., Rindfuss, R. R., & Page, P. H. (2006). Spatial simulation modelling of land use/land cover change scenarios in northeastern Thailand: A cellular automata approach. Journal of Land Use Science, 1, 5–28.

    Article  Google Scholar 

  • Ward, D. P., Murray, A. T., & Phinn, S. R. (2000). A stochastically constrained cellular model of urban growth. Computer, Environment and Urban Systems, 24, 539–558.

    Article  Google Scholar 

  • White, R., & Engelen, G. (1993). Cellular automata and fractal urban form: A cellular modelling approach to the evolution of urban land-use. Environment and Planning A, 25, 1175–1199.

    Article  Google Scholar 

  • White, R., & Engelen, G. (1997). Cellular automata as the basis of integrated dynamic regional modelling. Environment and Planning B, 24, 235–246.

    Article  Google Scholar 

  • White, R., & Engelen, G. (2000). High-resolution integrated modelling of the spatial dynamics of urban and regional systems. Computer, Environment and Urban Systems, 24, 383–400.

    Article  Google Scholar 

  • White, R., Engelen, G., & Uljee, I. (1997). The use of constrained cellular automata for high-resolution modelling of urban land-use dynamics. Environment and Planning B, 24, 323–343.

    Article  Google Scholar 

  • Wilson, A. G. (1970). Entropy in urban and regional modelling. London: Pion.

    Google Scholar 

  • Wilson, A. G. (1976). Catastrophe theory and urban modelling: An application to modal choice. Environment and Planning A, 8, 351–356.

    Article  Google Scholar 

  • Wilson, A. G. (1981). Catastrophy theory and bifurcation. Berkeley, California: University of California Press.

    Google Scholar 

  • Wong, D., & Fotheringham, A. (1990). Urban systems as examples of bounded chaos: Exploring the relationship between fractal dimension, rank-size, and rural-to-urban migration. Geografiska Annaler B, Human Geography, 72, 89–99.

    Article  Google Scholar 

  • Wolfram, S. (1994). Cellular automata and complexity. MA: Addison-Wesley, Reading.

    Google Scholar 

  • Wolfram, S. (2002). A new kind of science. London: Champaign, Wolfram Media.

    Google Scholar 

  • Wu, F., & Webster, C. J. (1998). Simulation of land development through the integration of cellular automata and multi-criteria evaluation. Environment and Planning B, 25, 103–126.

    Article  Google Scholar 

  • Wu, F. (1998a). An experiment on the generic polycentricity of urban growth in acellular automatic city. Environment and Planning B, 25, 731–752.

    Article  Google Scholar 

  • Wu, F. (1998b). Simulating urban encroachment on rural land with fuzzy-logic-controlled cellular automata in a geographical information system. Journal of Environmental Management, 53, 293–308.

    Article  Google Scholar 

  • Wu, F. (1998c). SimLand: A prototype to simulate land conversion through the integrated GIS and CA with AHP-derived transition rules. International Journal of Geographical Information Science, 12, 63–82.

    Article  Google Scholar 

  • Wu, F. (2002). Calibration of stochastic cellular automata: The application to rural-urban land conversions. International Journal of Geographical Information Science, 16, 795–818.

    Article  Google Scholar 

  • Yeh, A., & Li, X. (2001). Measurement and monitoring of urban sprawl in a rapidly growing region using entropy. Photogrammetric Engineering and Remote Sensing, 67, 83–89.

    Google Scholar 

  • Ziehr, C. (2005). Fundamental of geography. Education Course, Northeastern State University. URL:http://arapaho.nsuok.edu/~ziehr/courses/geog2243/Urban_Accessibility.htm,[Accessed 2005].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda See.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al-Ahmadi, K., Heppenstall, A., Hogg, J. et al. A Fuzzy Cellular Automata Urban Growth Model (FCAUGM) for the City of Riyadh, Saudi Arabia. Part 1: Model Structure and Validation. Appl. Spatial Analysis 2, 65–83 (2009). https://doi.org/10.1007/s12061-008-9020-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12061-008-9020-6

Keywords

Navigation