Skip to main content
Log in

A comparison of slip, disjoining pressure, and interface formation models for contact line motion through asymptotic analysis of thin two-dimensional droplet spreading

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

The motion of a contact line is examined, and comparisons drawn, for a variety of models proposed in the literature. Pressure and stress behaviours at the contact line are examined in the prototype system of quasistatic spreading of a thin two-dimensional droplet on a planar substrate. The models analysed include three disjoining pressure models based on van der Waals interactions, a model introduced for polar fluids, and a liquid–gas diffuse-interface model; Navier-slip and two non-linear slip models are investigated, with three microscopic contact angle boundary conditions imposed (two of these contact angle conditions having a contact line velocity dependence); and the interface formation model is also considered. In certain parameter regimes it is shown that all of the models predict the same quasistatic droplet spreading behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. We note that in Eqs. (18)–(19b) we have included the disjoining pressure in the momentum equation, as in [50, 57, 61]. A derivation may be made with the disjoining pressure instead entering into the normal stress balance in Eq. (19b)(i), as, for example, in [62, 63]; however, the same evolution equation as in (20) is then found.

  2. It should be noted here that whilst the contact angle condition can be applied directly to the behaviour of the outer solution as the contact line is approached, a slip condition at the wall is still required to alleviate the stress singularity, and inner regions are necessary to compute the correction to the leading order in the evolution equation for the droplet radius. See [37] for further details.

References

  1. Dussan VEB (1979) On the spreading of liquids on solid surfaces: Static and dynamic contact lines. Annu Rev Fluid Mech 11(1):371–400

  2. de Gennes PG (1985) Wetting: statics and dynamics. Rev Mod Phys 57:827–863

    Article  ADS  Google Scholar 

  3. Blake T (2006) The physics of moving wetting lines. J Colloid Interface Sci 299(1):1–13

    Article  Google Scholar 

  4. Bonn D, Eggers J, Indekeu J, Meunier J, Rolley E (2009) Wetting and spreading. Rev Mod Phys 81:739–805

    Article  ADS  Google Scholar 

  5. Snoeijer JH, Andreotti B (2013) Moving contact lines: scales, regimes, and dynamical transitions. Annu Rev Fluid Mech 45:269–292

    Article  MathSciNet  ADS  Google Scholar 

  6. Sui Y, Ding H, Spelt PDM (2014) Numerical simulations of flows with moving contact lines. Annu Rev Fluid Mech 46:97–119

    Article  MathSciNet  ADS  Google Scholar 

  7. Moffatt HK (1964) Viscous and resistive eddies near a sharp corner. J Fluid Mech 18(01):1–18

    Article  MATH  ADS  Google Scholar 

  8. Huh C, Scriven LE (1971) Hydrodynamic model of steady movement of a solid/liquid/fluid contact line. J Colloid Interface Sci 35(1):85–101

    Article  Google Scholar 

  9. Navier C-L (1823) Mémoire sur les lois du mouvement des fluides. Mem Acad Sci Inst Fr 6:389–440

    Google Scholar 

  10. Thompson PA, Troian SM (1997) A general boundary condition for liquid flow at solid surfaces. Nature 389:360–362

    Article  ADS  Google Scholar 

  11. He G, Hadjiconstantinou NG (2003) A molecular view of Tanner’s law: molecular dynamics simulations of droplet spreading. J Fluid Mech 497:123–132

  12. Qian T, Wang X-P, Sheng P (2003) Molecular scale contact line hydrodynamics of immiscible flows. Phys Rev E 68:016306

    Article  ADS  Google Scholar 

  13. Lauga E, Brenner M, Stone H (2007) Microfluidics: the no-slip boundary condition. In: Tropea C, Yarin A, Foss J (eds) Springer handbook of experimental fluid mechanics. Springer, Berlin, pp 1219–1240

    Chapter  Google Scholar 

  14. Dussan VEB, Davis SH (1974) On the motion of a fluid–fluid interface along a solid surface. J Fluid Mech 65(1):71–95

  15. Schwartz LW, Eley RR (1998) Simulation of droplet motion on low-energy and heterogeneous surfaces. J Colloid Interface Sci 202(1):173–188

    Article  Google Scholar 

  16. Weidner DE, Schwartz LW (1994) Contact-line motion of shear-thinning liquids. Phys Fluids 6:3535–3538

    Article  MATH  ADS  Google Scholar 

  17. Shikhmurzaev YD (1993) The moving contact line on a smooth solid surface. Int J Multiph Flow 19(4):589–610

    Article  MATH  Google Scholar 

  18. Renardy M, Renardy Y, Li J (2001) Numerical simulation of moving contact line problems using a volume-of-fluid method. J Comput Phys 171(1):243–263

  19. Benilov ES, Vynnycky M (2013) Contact lines with a \(180^\circ \) contact angle. J Fluid Mech 718:481–506

    Article  MATH  ADS  Google Scholar 

  20. Rednikov A, Colinet P (2013) Singularity-free description of moving contact lines for volatile liquids. Phys Rev E 87:010401(R)

    Article  ADS  Google Scholar 

  21. Anderson DM, McFadden GB, Wheeler AA (1998) Diffuse-interface methods in fluid mechanics. Annu Rev Fluid Mech 30:139–165

    Article  MathSciNet  ADS  Google Scholar 

  22. Seppecher P (1996) Moving contact lines in the Cahn–Hilliard theory. Int J Eng Sci 34(9):977–992

    Article  MATH  MathSciNet  Google Scholar 

  23. Jacqmin D (2000) Contact-line dynamics of a diffuse fluid interface. J Fluid Mech 402:57–88

    Article  MATH  MathSciNet  ADS  Google Scholar 

  24. Petrov P, Petrov I (1992) A combined molecular–hydrodynamic approach to wetting kinetics. Langmuir 8(7):1762–1767

    Article  Google Scholar 

  25. Rowlinson JS (1979) The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density. J Stat Phys 20:200–244 (Translation of the work of J. D. van der Waals)

    Article  MathSciNet  ADS  Google Scholar 

  26. van der Waals JD (1893) Thermodynamische theorie der capillariteit in de onderstelling van continue dichtheidsverandering. Verhand Konink Akad Weten Amsterdam 1:1–56

    Google Scholar 

  27. Hocking LM (1983) The spreading of a thin drop by gravity and capillarity. Q J Mech Appl Math 36(1):55–69

    Article  MATH  MathSciNet  Google Scholar 

  28. Cox RG (1986) The dynamics of the spreading of liquids on a solid surface. Part 1. Viscous flow. J Fluid Mech 168:169–194

    Article  MATH  ADS  Google Scholar 

  29. Savva N, Kalliadasis S (2011) Dynamics of moving contact lines: a comparison between slip and precursor film models. Europhys Lett 94(6):64004

    Article  ADS  Google Scholar 

  30. Hoffman RL (1975) A study of the advancing interface. I. Interface shape in liquid-gas systems. J Colloid Interface Sci 50(2):228–241

    Article  Google Scholar 

  31. Fermigier M, Jenffer P (1991) An experimental investigation of the dynamic contact angle in liquid–liquid systems. J Colloid Interface Sci 146(1):226–241

    Article  Google Scholar 

  32. Ramé E, Garoff S (1996) Microscopic and macroscopic dynamic interface shapes and the interpretation of dynamic contact angles. J Colloid Interface Sci 177(1):234–244

    Article  Google Scholar 

  33. Šikalo Š, Wilhelm H-D, Roisman IV, Jakirlić S, Tropea C (2005) Dynamic contact angle of spreading droplets: experiments and simulations. Phys Fluids 17(6):062103

    Article  ADS  Google Scholar 

  34. Sibley DN, Savva N, Kalliadasis S (2012) Slip or not slip? A methodical examination of the interface formation model using two-dimensional droplet spreading on a horizontal planar substrate as a prototype system. Phys Fluids 24(8):082105

    Article  ADS  Google Scholar 

  35. Greenspan HP (1978) On the motion of a small viscous droplet that wets a surface. J Fluid Mech 84(1):125–143

    Article  MATH  ADS  Google Scholar 

  36. Haley PJ, Miksis MJ (1991) The effect of the contact line on droplet spreading. J Fluid Mech 223:57–81

    Article  MATH  MathSciNet  ADS  Google Scholar 

  37. Hocking LM (1992) Rival contact-angle models and the spreading of drops. J Fluid Mech 239:671–681

    Article  MATH  MathSciNet  ADS  Google Scholar 

  38. Ehrhard P, Davis SH (1991) Non-isothermal spreading of liquid drops on horizontal plates. J Fluid Mech 229:365–388

    Article  MATH  ADS  Google Scholar 

  39. Wilson SK, Hunt R, Duffy BR (2000) The rate of spreading in spin coating. J Fluid Mech 413:65–88

    Article  MATH  ADS  Google Scholar 

  40. Eggers J (2005) Contact line motion for partially wetting fluids. Phys Rev E 72:061605

    Article  ADS  Google Scholar 

  41. Cox RG (1998) Inertial and viscous effects on dynamic contact angles. J Fluid Mech 357:249–278

    Article  MATH  MathSciNet  ADS  Google Scholar 

  42. Sui Y, Spelt PDM (2013) Validation and modification of asymptotic analysis of slow and rapid droplet spreading by numerical simulation. J Fluid Mech 715:283–313

    Article  MATH  MathSciNet  ADS  Google Scholar 

  43. Stokes GG (1845) On the theories of the internal friction of fluids in motion, and of the equilibrium and motion of elastic solids. Trans Camb Philos Soc 8:287–305

    Google Scholar 

  44. Kirkinis E, Davis SH (2013) Hydrodynamic theory of liquid slippage on a solid substrate near a moving contact line. Phys Rev Lett 110:234503

    Article  ADS  Google Scholar 

  45. Hocking LM (1977) A moving fluid interface. Part 2. The removal of the force singularity by a slip flow. J Fluid Mech 79(2):209–229

    Article  MATH  ADS  Google Scholar 

  46. Ruckenstein E, Dunn CS (1977) Slip velocity during wetting of solids. J Colloid Interface Sci 59(1):135–138

    Article  Google Scholar 

  47. Benney DJ, Timson WJ (1980) The rolling motion of a viscous fluid on and off a rigid surface. Stud Appl Maths 63:93–98

    MATH  MathSciNet  Google Scholar 

  48. Ngan CG, Dussan VEB (1984) The moving contact line with a \(180^\circ \) advancing contact angle. Phys Fluids 27(12):2785–2787

  49. Bertozzi AL (1998) The mathematics of moving contact lines in thin liquid films. Not Am Math Soc 45(6):689–697

    MATH  MathSciNet  Google Scholar 

  50. Oron A, Davis SH, Bankoff SG (1997) Long-scale evolution of thin liquid films. Rev Mod Phys 69(3):931–980

    Article  ADS  Google Scholar 

  51. Savva N, Kalliadasis S (2009) Two-dimensional droplet spreading over topographical substrates. Phys Fluids 21(9):092102

    Article  ADS  Google Scholar 

  52. Duffy BR, Wilson SK (1997) A third-order differential equation arising in thin-film flows and relevant to Tanner’s law. Appl Math Lett 10(3):63–68

    Article  MATH  MathSciNet  Google Scholar 

  53. Eggers J (2004) Toward a description of contact line motion at higher capillary numbers. Phys Fluids 16(9):3491–3494

    Article  MathSciNet  ADS  Google Scholar 

  54. Craster RV, Matar OK (2009) Dynamics and stability of thin liquid films. Rev Mod Phys 81:1131–1198

    Article  ADS  Google Scholar 

  55. Kalliadasis S, Thiele U (eds) (2007) Thin Films of Soft Matter. Springer, New York

  56. Thiele U (2011) Note on thin film equations for solutions and suspensions. Eur Phys J Spec Top 197:213–220

    Article  Google Scholar 

  57. Williams MB, Davis SH (1982) Nonlinear theory of film rupture. J Colloid Interface Sci 90(1):220–228

    Article  Google Scholar 

  58. Shikhmurzaev YD (2011) Some dry facts about dynamic wetting. Eur Phys J Spec Top 197:47–60

    Article  Google Scholar 

  59. Shikhmurzaev YD (2008) Capillary flows with forming interfaces. Taylor & Francis, London

    MATH  Google Scholar 

  60. Ockendon H, Ockendon JR (1995) Viscous flow. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  61. Münch A, Wagner B, Witelski T (2005) Lubrication models with small to large slip lengths. J Eng Math 53(3–4):359–383

    Article  MATH  Google Scholar 

  62. Ajaev VS (2005) Spreading of thin volatile liquid droplets on uniformly heated surfaces. J Fluid Mech 528:279–296

    Article  MATH  MathSciNet  ADS  Google Scholar 

  63. Fuentes J, Cerro RL (2007) Surface forces and inertial effects on moving contact lines. Chem Eng Sci 62(12):3231–3241

    Article  Google Scholar 

  64. King JR, Bowen M (2001) Moving boundary problems and non-uniqueness for the thin film equation. Eur J Appl Math 12:321–356

    MATH  MathSciNet  Google Scholar 

  65. Sharma A (1993) Relationship of thin film stability and morphology to macroscopic parameters of wetting in the apolar and polar systems. Langmuir 9(3):861–869

    Article  Google Scholar 

  66. Hocking LM (1995) The wetting of a plane surface by a fluid. Phys Fluids 7(6):1214–1220

    Article  MATH  MathSciNet  ADS  Google Scholar 

  67. Wu Q, Wong H (2004) A slope-dependent disjoining pressure for non-zero contact angles. J Fluid Mech 506:157–185

    Article  MATH  MathSciNet  ADS  Google Scholar 

  68. Pismen LM, Pomeau Y (2000) Disjoining potential and spreading of thin liquid layers in the diffuse-interface model coupled to hydrodynamics. Phys Rev E 62:2480–2492

    Article  MathSciNet  ADS  Google Scholar 

  69. Sibley DN, Nold A, Savva N, Kalliadasis S (2013) On the moving contact line singularity: asymptotics of a diffuse-interface model. Eur Phys J E 36:26

    Article  Google Scholar 

  70. Sibley DN, Nold A, Savva N, Kalliadasis S (2013) The contact line behaviour of solid–liquid–gas diffuse–interface models. Phys Fluids 25(9):092111

    Article  ADS  Google Scholar 

  71. Young T (1805) An essay on the cohesion of fluids. Phil Trans R Soc Lond 95:65–87

    Article  Google Scholar 

  72. Giacomelli L, Otto F (2002) Droplet spreading: intermediate scaling law by PDE methods. Commun Pure Appl Math 55:217–254

    Article  MATH  MathSciNet  Google Scholar 

  73. Pismen LM, Eggers J (2008) Solvability condition for the moving contact line. Phys Rev E 78:056304

    Article  MathSciNet  ADS  Google Scholar 

  74. Pismen LM (2001) Nonlocal diffuse interface theory of thin films and the moving contact line. Phys Rev E 64:021603

    Article  ADS  Google Scholar 

  75. Pismen LM (2002) Mesoscopic hydrodynamics of contact line motion. Colloid Surf A 206(1–3):11–30

  76. Evans R (1979) The nature of the liquid–vapour interface and other topics in the statistical mechanics of non-uniform, classical fluids. Adv Phys 28(2):143–200

    Article  ADS  Google Scholar 

  77. Pereira A, Kalliadasis S (2012) Equilibrium gas–liquid–solid contact angle from density-functional theory. J Fluid Mech 692:53–77

    Article  MATH  ADS  Google Scholar 

  78. Goddard BD, Nold A, Savva N, Pavliotis GA, Kalliadasis S (2012) General dynamical density functional theory for classical fluids. Phys Rev Lett 109:120603

    Article  ADS  Google Scholar 

  79. Goddard BD, Nold A, Savva N, Yatsyshin P, Kalliadasis S (2013) Unification of dynamic density functional theory for colloidal fluids to include inertia and hydrodynamic interactions: derivation and numerical experiments. J Phys Condens Matter 25:035101

    Article  ADS  Google Scholar 

  80. Sheng P, Zhou M (1992) Immiscible-fluid displacement: contact-line dynamics and the velocity-dependent capillary pressure. Phys Rev A 45:5694–5708

    Article  ADS  Google Scholar 

  81. Savva N, Kalliadasis S (2012) Influence of gravity on the spreading of two-dimensional droplets over topographical substrates. J Eng Math 73(1):3–16

    Article  MathSciNet  Google Scholar 

  82. Herde D, Thiele U, Herminghaus S, Brinkmann M (2012) Driven large contact angle droplets on chemically heterogeneous substrates. Europhys Lett 100:16002

    Article  Google Scholar 

  83. Schmuck M, Pradas M, Pavliotis GA, Kalliadasis S (2012) Upscaled phase-field models for interfacial dynamics in strongly heterogeneous domains. Proc R Soc A 468(2147):3705–3724

  84. Vellingiri R, Savva N, Kalliadasis S (2011) Droplet spreading on chemically heterogeneous substrates. Phys Rev E 84:036305

    Article  ADS  Google Scholar 

  85. Dupuis A, Yeomans JM (2005) Modeling droplets on superhydrophobic surfaces: equilibrium states and transitions. Langmuir 21(6):2624–2629

    Article  Google Scholar 

  86. Kusumaatmaja H, Blow ML, Dupuis A, Yeomans JM (2008) The collapse transition on superhydrophobic surfaces. Europhys Lett 81(3):36003

    Article  ADS  Google Scholar 

  87. Savva N, Pavliotis GA, Kalliadasis S (2011) Contact lines over random topographical substrates. Part 1. Statics. J Fluid Mech 672:358–383

  88. Savva N, Pavliotis GA, Kalliadasis S (2011) Contact lines over random topographical substrates. Part 2. Dynamics. J Fluid Mech 672:384–410

  89. Wylock C, Pradas M, Haut B, Colinet P, Kalliadasis S (2012) Disorder-induced hysteresis and nonlocality of contact line motion in chemically heterogeneous microchannels. Phys Fluids 24(3):032108

    Article  ADS  Google Scholar 

  90. Thiele U, Velarde MG, Neuffer K, Bestehorn M, Pomeau Y (2001) Sliding drops in the diffuse interface model coupled to hydrodynamics. Phys Rev E 64:061601

    Article  ADS  Google Scholar 

  91. Savva N, Kalliadasis S (2013) Droplet motion on inclined heterogeneous substrates. J Fluid Mech 725:462–491

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

We are grateful to the editor and all anonymous referees for the many useful comments and suggestions. We acknowledge financial support from ERC Advanced Grant No. 247031, and Imperial College London through a DTG International Studentship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serafim Kalliadasis.

Appendices

Appendix A. Solutions for slip models in Moffatt wedge geometry

The stream function, velocity, stress, and pressure behaviours for the Moffatt wedge geometry, for Navier-slip in (15), are found to be

$$\begin{aligned}&\psi \sim -\frac{r^2 U}{4\lambda }\left( 1-\frac{\theta }{\theta _\mathrm{c}} + \frac{\sin (2\theta )\cos (2\theta _\mathrm{c})}{\sin (2\theta _\mathrm{c})}-\cos (2\theta ) \right) ,\nonumber \\&u \sim -\frac{rU}{4\lambda }\left( -\frac{1}{\theta _\mathrm{c}} + \frac{2\cos (2\theta )\cos (2\theta _\mathrm{c})}{\sin (2\theta _\mathrm{c})}+2\sin (2\theta ) \right) ,\qquad v \sim -\frac{2\psi }{r}, \qquad p \sim \frac{U}{\lambda \theta _\mathrm{c}} \log r, \\&T_{rr} \sim \frac{U}{2\lambda }\frac{\sin (2\theta _\mathrm{c})-2\theta _\mathrm{c}\cos (2(\theta _\mathrm{c}-\theta ))}{\theta _\mathrm{c}\sin (2\theta _\mathrm{c})} ,\qquad T_{r\theta } \sim \frac{U}{\lambda }\frac{\sin (2(\theta -\theta _\mathrm{c}))}{\sin (2\theta _\mathrm{c})} ,\qquad T_{\theta \theta } \sim -T_{rr}. \nonumber \end{aligned}$$
(64)

These results show clearly how the Navier-slip model removes the singularity in the stress as the contact line is approached but a logarithmic singularity in the pressure remains.

Similarly for the general slip case in (15), we obtain

$$\begin{aligned}&\psi \sim r^{2+n}\left( C_{1\mathrm{s}}\sin (n\theta )+C_{2\mathrm{s}}(\cos (n\theta )-\cos ((2+n)\theta )) + C_{3\mathrm{s}}\sin ((2+n)\theta ) \right) , \nonumber \\&u \sim r^{1+n}\left( n[C_{1\mathrm{s}}\cos (n\theta )-C_{2\mathrm{s}}\sin (n\theta )] +(2+n)[C_{3\mathrm{s}}\cos ((2+n)\theta ) + C_{2\mathrm{s}}\sin ((2+n)\theta )]\right) , \nonumber \\&v \sim -\frac{(2+n)\psi }{r} ,\qquad p \sim 4(1+n) r^n C_{1\mathrm{s}} \frac{\cos (n(\theta _\mathrm{c}-\theta ))}{\cos (n\theta _\mathrm{c})}, \qquad T_{\theta \theta } \sim -T_{rr}, \nonumber \\&T_{rr} \sim 2(1+n) r^n \left( (2+n)[C_{3\mathrm{s}}\cos ((2+n)\theta ) + C_{2\mathrm{s}}\sin ((2+n)\theta )] + \frac{C_{1\mathrm{s}}n\cos (n(\theta _\mathrm{c}-\theta ))}{\cos (n\theta _\mathrm{c})} \right) ,\nonumber \\&T_{r\theta } \sim 2(1+n) r^n \left( {C_{2\mathrm{s}}\frac{(2+n)\sin ((2+n)(\theta _\mathrm{c}-\theta ))}{\sin ((2+n)\theta _\mathrm{c})} -C_{1\mathrm{s}} \frac{n\sin (n(\theta -\theta _\mathrm{c}))}{\cos (n\theta _\mathrm{c})} }\right) , \end{aligned}$$
(65)

where

$$\begin{aligned} C_{1\mathrm{s}} = \frac{U\lambda ^{-(1+n)}\sin ^n\theta _\mathrm{c}}{4(1+n)\tan (n\theta _\mathrm{c})},\qquad C_{2\mathrm{s}} = - C_{4\mathrm{s}} = -C_{1\mathrm{s}}\tan (n\theta _\mathrm{c}),\qquad C_{3\mathrm{s}} = \frac{C_{2\mathrm{s}}}{\tan ((2+n)\theta _\mathrm{c})}. \end{aligned}$$
(66)

We see from this solution that \(n=0\) does not recover the Navier-slip solution because this is a degenerate solution of the biharmonic equation. However, the two cases considered by Haley and Miksis [36], corresponding to \(n=1\) and \(n=2\) here, will resolve both the pressure and stress singularities. In contrast to the Navier-slip model, they both give zero pressure and stresses as the contact line is approached—the pressure and stresses being respectively \(O(r)\) and \(O(r^2)\) in the two cases.

There is, however, a possibility of removing the logarithmic pressure singularity but retaining an \(O(1)\) stress behaviour. Previously in (5) we suggested that for the stresses to be \(O(1)\), the stream function must be prescribed by \(\psi \sim r^2 F(\theta )\), with \(F(\theta )\) to be determined. We have also seen that this form, which corresponds to the Navier-slip condition, yields \(O(\log r)\) pressure as \(r\rightarrow 0\) due to the \(1/r\) terms in the divergence of the stress. However, it is also possible to cancel the logarithmic pressure terms by relaxing the assumption of constant surface tension, thereby obtaining a finite pressure solution. More specifically, from (11), where \(\varvec{\nabla }_{\mathrm{s}}\sigma \) is the surface gradient of \(\sigma \) and which, given in terms of the usual gradient operator, is \(\varvec{\nabla }_{\mathrm{s}}\sigma = (\mathbf{I}-\mathbf n \otimes \mathbf n )\varvec{\nabla }\sigma \), we can determine the dynamic boundary condition as

$$\begin{aligned} T_{r\theta } = -\frac{{\partial {\sigma }}}{{\partial {r}}} \qquad \text{ on }\quad \theta =\theta _c. \end{aligned}$$
(67)

Now using the pressure equations from (6), with \(\psi \sim r^2 F(\theta )\), gives

$$\begin{aligned} \frac{{\partial {p}}}{{\partial {r}}} = \frac{1}{r}(F'''+4F'), \qquad \frac{{\partial {p}}}{{\partial {\theta }}} = 0, \end{aligned}$$
(68)

and thus (at leading order in \(r\)) \(p=p(r)\). To have a pressure without a singularity requires \(F'''+4F'=0\), and this third-order ODE has the general solution

$$\begin{aligned} F = B_1+B_2\sin (2\theta )+B_3\cos (2\theta ), \end{aligned}$$
(69)

where the \(B_i\) are constant coefficients. From (69) and (9), we thus impose the stream function form

$$\begin{aligned} \psi \sim r^2(B_1+B_2\sin (2\theta )+B_3\cos (2\theta ))&+r^3(C_1\sin \theta +C_2\cos \theta +C_3\sin (3\theta )+C_4\cos (3\theta )), \end{aligned}$$
(70)

keeping two orders in \(r\) so as to obtain the leading-order term in the pressure behaviour. We find after applying the boundary conditions [including (67)] with Navier-slip

$$\begin{aligned}&\psi \sim -\frac{1}{4}\frac{Ur^2}{\lambda }\left( 1-\tan \theta _\mathrm{c}\sin (2\theta )-\cos (2\theta ) \right) \nonumber \\&\qquad \,\, \,\,-\frac{1}{16}\frac{Ur^3}{\lambda ^2}\left( \sin \theta - \tan \theta _\mathrm{c}\cos \theta - \frac{(2\cos (2\theta _\mathrm{c})-1)\sin (3\theta )}{2\cos (2\theta _\mathrm{c})+1} + \tan \theta _\mathrm{c}\cos (3\theta )\right) , \nonumber \\&u \sim \frac{1}{2}\frac{Ur}{\lambda } \left( \tan \theta _\mathrm{c}\cos (2\theta ) - \sin (2\theta ) \right) , \qquad v \sim \frac{1}{2}\frac{Ur}{\lambda }\left( 1-\tan \theta _\mathrm{c}\sin (2\theta )-\cos (2\theta ) \right) ,\nonumber \\&T_{rr} \sim \frac{U}{\lambda }\left( \tan \theta _\mathrm{c}\cos (2\theta ) - \sin (2\theta ) \right) ,\qquad T_{r\theta } \sim -\frac{U}{\lambda }\left( \tan \theta _\mathrm{c}\sin (2\theta )+\cos (2\theta ) \right) ,\nonumber \\&T_{\theta \theta } \sim -T_{rr} ,\qquad p \sim -\frac{1}{2}\frac{Ur}{\lambda ^2}\frac{\cos (\theta _\mathrm{c}-\theta )}{\cos \theta _\mathrm{c}}, \end{aligned}$$
(71)

displaying the mathematical possibility of such a flow. We note here as part of the result the form of the surface tension was forced to satisfy

$$\begin{aligned} \frac{{\partial {\sigma }}}{{\partial {r}}} \sim \frac{U}{\lambda } \quad \Rightarrow \quad \sigma \sim \sigma _\mathrm{c} + \frac{Ur}{\lambda } \qquad \text{ as } r\rightarrow 0, \end{aligned}$$
(72)

which gives a reasonable result for the surface tension \(\sigma \), that it is a constant to leading order when \(r\ll 1\), the regime in which we are interested. This also gives a motivation as to why a model which allows for variable surface tension, i.e. surface tension relaxation, may be able to predict a flow which has no logarithmic pressure singularity but finite and non-zero stresses at the contact line. Such surface tension relaxation is a feature of the interface formation model [59], where the surface tension is given as \(\sigma =\sigma (\rho ^s)\) and the surface density is a function of position and time, i.e. \(\rho ^s=\rho ^s(\mathbf x ,t)\).

Appendix B. Intermediate region for quasistatic spreading

Motivated by the analysis of [27] and the matching conditions (52), we introduce the intermediate scalings

$$\begin{aligned} \Phi = C_a\xi \phi , \qquad \hat{\zeta }= \hat{\epsilon }\ln \left( \mathrm{e}^{C_a^2C_b}C_a\xi \right) , \end{aligned}$$
(73)

where \(\hat{\epsilon }= 1/|\ln \delta |\). Neglecting exponentially small terms, (44) transforms to

$$\begin{aligned} \frac{{\partial {}}}{{\partial {\hat{\zeta }}}}\left\{ \mathrm{e}^{\hat{\zeta }/\hat{\epsilon }-C_a^2C_b}\left[ C_a\dot{a}\phi + C_a^4\phi ^3\left( \hat{\epsilon }^3\frac{{\partial ^3{\phi }}}{{\partial {\hat{\zeta }}^3}}-\hat{\epsilon }\frac{{\partial {\phi }}}{{\partial {\hat{\zeta }}}} \right) \right] \right\} =0, \end{aligned}$$
(74)

so that to leading order in \(\hat{\epsilon }\) we have

$$\begin{aligned} \phi = \left( \mathcal {K} + \frac{3\dot{a}\hat{\zeta }}{C_a^3\hat{\epsilon }} \right) ^{1/3}, \end{aligned}$$
(75)

where \(\mathcal {K}\) is a constant of integration. Expanding these for \(\mathcal {K} \gg {3\dot{a}\hat{\zeta }}/{(C_a^3\hat{\epsilon })}\) and rewriting in inner variables, we have

$$\begin{aligned} \frac{{\partial {\Psi }}}{{\partial {\xi }}} \sim C_a\mathcal {K}^{1/3} + \dot{a}\mathcal {K}^{-2/3}\left[ {C_b + \ln (\text{ e }\, C_a \xi )/C_a^2} \right] , \end{aligned}$$
(76)

which gives \(\mathcal {K}=1\) to match with (52). To match this intermediate solution to the outer solution, (75) clearly suggests that matching should be performed with the cube of the free-surface slope, and indeed we find from (75) using scalings (73) (with our result that \(\mathcal {K}=1\)) that

$$\begin{aligned} -\left( {\frac{{\partial {h}}}{{\partial {x}}}} \right) ^3 \sim C_a^3 + 3\dot{a}\left( {C_a^2 C_b + \ln \left[ {\frac{\text{ e }\, C_a(a-x)}{\delta }} \right] } \right) , \end{aligned}$$
(77)

which is the same result as would be found directly from the inner-region behaviour (52). From the outer-region behaviour (42) we have

$$\begin{aligned} -\left( {\frac{{\partial {h}}}{{\partial {x}}}} \right) ^3 \sim \frac{27}{a^6} + 3\dot{a}\ln \left( \frac{\text{ e }^3(a-x)}{2a}\right) , \end{aligned}$$
(78)

and thus the matching of these provides the spreading rate result given in (54).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sibley, D.N., Nold, A., Savva, N. et al. A comparison of slip, disjoining pressure, and interface formation models for contact line motion through asymptotic analysis of thin two-dimensional droplet spreading. J Eng Math 94, 19–41 (2015). https://doi.org/10.1007/s10665-014-9702-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-014-9702-9

Keywords

Navigation