Skip to main content

Advertisement

Log in

Biodiversity and biomass relationships in a cerrado stricto sensu in Southeastern Brazil

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Deforestation accounts for the majority of greenhouse gas emissions in developing countries. In Brazil, deforestation represents ~ 70% of the nation’s greenhouse gas emissions. Among the main deforested vegetation, Cerrado (Brazilian savanna) occupies a prominent position as it is the second biggest biome in Brazil. Despite its importance, there are still few estimates of above and belowground biomass of Cerrado vegetation encompassing its structural and spatial complexity. Also, Cerrado holds a specific biodiversity that is normally undervalued and which is being lost in the fires of agricultural fronts. In this context, this study aimed to verify the relationship of the existing flora biodiversity in a cerrado stricto sensu with its aboveground biomass and carbon stocks. The possibility of a relationship between fine root mass and soil organic carbon content was also verified. The study area presented a total of 67 species and 798 trees (average: 1596 trees ha−1). The mean total aboveground biomass and carbon stocks were 77.08 Mg ha−1 and 38.54 Mg ha−1 respectively. Soil organic carbon stock (0–30 cm) was 8.51 Mg ha−1 whereas fine roots were 1.637 Mg ha−1. Total aboveground biomass presented a highly significant asymptotic relationship with biodiversity demonstrating its importance in reaching high biomass accumulation. A significant relationship between soil organic carbon content and fine root biomass was found making easier belowground biomass estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and materials

Data are available upon request to the corresponding author which might be reached by email correspondence.

References

  • Abdala, G. C., Caldas, L. S., Haridasan, M., & Eiten, G. (1998). Above and belowground organic matter and root: shoot ratio in Central Brazil. Brazilian Journal of Ecology, 2(1), 11–23.

    Google Scholar 

  • Alencar, A., Shimbo, J. Z., Lenti, F., Marques, C. B., Zimbres, B., Rosa, M., Arruda, V., Castro, I., Ribeiro, J. P. F. M., Varela, V., Alencar, I., Piontekowski, V., Ribeiro, V., Bustamante, M. M. C., Sano, E. E., & Barroso, M. (2020). Mapping three decades of changes in the Brazilian savanna native vegetation using Landsat data processed in the Google Earth engine platform. Remote Sensing, 12(6), 924.

    Article  Google Scholar 

  • Asner, G. P. (2009). Measuring carbon emissions from tropical deforestation: an overview. Environmental defense fund – finding the way that work. 11 p. Retrieved December 15, 2020 from http://www.edf.org/sites/default/files/10333_Measuring_Carbon_Emissions_from_Tropical_Deforestation--An_Overview.pdf

  • Bellassen, V., Crassous, R., Dietzsch, L., & Schwartzman, S. (2008). Reducing emissions from deforestation and degradation: What contribution from carbon markets? Climate Report – research on the economics of climate change. Mission Climat of Caisse des Dépôts. Paris-France. n. 14. 44 p.

  • Berardi, A. (1994). Effects of the African grass Melinis minutiflora on plant community composition and fire characteristics of a central Brazilian savanna. Master’s Thesis, University College, University of London, London-UK.

  • Bispo, P. C., Rodríguez-Veiga, P., Zimbres, B., Miranda, S. C., Cezare, C. H. G., Fleming, S., Baldacchino, F., Louis, V., Rains, D., Garcia, M., Bon Espírito-Santo, F., Roitman, I., Pacheco-Pascagaza, A. M., Gou, Y., Roberts, J., Barrett, K., Ferreira, L. G., Shimbo, J. Z., Alencar, A., Bustamante, M., Woodhouse, I. H., Sano, E. E., Ometto, J. P., Tansey, K., & Balzter, H. (2020). Woody aboveground biomass mapping of the Brazilian savanna with a multi-sensor and machine learning approach. Remote Sensing, 12(17), 2685 (especial issue: Remote Sensing of Savannas and Woodlands). https://doi.org/10.3390/rs12172685

  • Brown, S. (1997). Estimating biomass and biomass change of tropical forests: A primer. FAO. Rome, Italy. 55 p.

  • Butler, R. A. (2020). Calculating deforestation figures for the Amazon. 2018. Retrieved September 25, 2021 from https://rainforests.mongabay.com/amazon/deforestation_calculations.html

  • Camargo, A. P. (2002). Potencial agrícola do cerrado. In A. L. Klein (Org.) Eugen Warming e o cerrado brasileiro: um século depois. 158 p. Ed. UNESP, Imprensa Oficial do Estado, São Paulo-Brazil. pp. 121–130.

  • Carvalho, D. C., Pessoa, M. M. L., Pereira, M. G., & Delgado, R. C. (2016). Evolution of Cerrado vegetal cover on a river island based on orbital imaging data. Engenharia Agrícola, 36(6), 1186–1197. https://doi.org/10.1590/1809-4430-Eng.Agric.v36n6p1186-1197/2016

    Article  Google Scholar 

  • Castro, E. A., & Kauffman, J. B. (1998). Ecosystem Structure in the Brazilian Cerrado: a vegetation gradient of aboveground biomass, root biomass and consumption by fire. Journal of Tropical Ecology, 14, 263–283.

    Article  Google Scholar 

  • Chang, H. K., Teixeira, A. J., & Vidal, A. C. (2003). Aspectos hidrogeológicos e hidroquímicos das regiões dos municípios de Mogi Mirim, Mogi Guaçu e Itapira no estado de São Paulo. Geociências, 22(n. especial), 63–73.

  • Chapungu, L., Nhamo, L., & Gatti, R. C. (2020). Estimating biomass of savanna grasslands as a proxy of carbon stock using multispectral remote sensing. Remote Sensing Applications: Society and Environment, 17, 100275. https://doi.org/10.1016/j.rsase.2019.100275

  • Cole, M. M. (1986). The savannas: Biogeography and geobotany (pp. 1–58). Academic Press.

    Google Scholar 

  • Corazza, E. J., Silva, J. E., Resck, D. V. S., & Gomes, A. C. (1999). Comportamento de diferentes sistemas de manejo como fonte ou depósito de carbono em relação à vegetação de cerrado. Revista Brasileira De Ciência Do Solo, 23, 425–432.

    Article  CAS  Google Scholar 

  • Coutinho, L. M. (2002) O bioma do cerrado. In A. L. Klein (Org.) Eugen Warming e o cerrado brasileiro: um século depois. 158 p. Ed. UNESP, Imprensa Oficial do Estado, São Paulo - Brazil. pp. 77–91.

  • Cummings, D. L., Kauffman, J. B., Perry, D. A., & Hughes, R. F. (2002). Aboveground biomass and structure of rainforests in the southwestern Brazilian Amazon. Forest Ecology and Management, 163, 293–307.

    Article  Google Scholar 

  • De Paula, J. E., Imañas-Encinas, J., & Santana, O. A. (2007). Levantamento florístico e dendrométrico de um hectare de Cerrado sensu stricto em Planaltina, Distrito Federal. Revista Brasileira De Ciências Agrárias, 2(4), 292–296.

    Article  Google Scholar 

  • Eiten, G. (1972). The Cerrado vegetation of Brazil. The Botanical Review, 38(2), 201–341.

    Article  Google Scholar 

  • FAO. (2006). Global Forest Resources Assessment 2005. FAO. Rome, Italy. 350 p. (FAO Forestry Paper, 147).

  • Fearnside, P. M. (1991). Greenhouse gas contributions from deforestation in Brazilian Amazonia. In J. S. Levine (Ed.) Global Biomass Burning: Atmospheric Climatic and Biospheric Implications. MIT Boston. pp. 92–105.

  • Fearnside, P. M., Graça, P. M. L. A., Leal Filho, N., Rodrigues, F. J. A., & Robinson, J. M. (1999). Tropical forest burning in Brazilian Amazonia: Measurement of biomass loading, burning efficiency and charcoal formation at Altamira. Pará. Forest Ecology and Management, 123, 65–79.

    Article  Google Scholar 

  • Felfili, J. M., & Silva Jr., M. C. (2005) Diversidade alfa e beta no cerrado sensu stricto, Distrito Federal, Goiás, Minas Gerais e Bahia. In A. Scariot, J. C. Sousa-Silva, J. M. Felfili (Eds.) Cerrado: ecologia, biodiversidade e conservação. Ministério do Meio Ambiente, Brasília, DF. Brasil. pp. 143–154.

  • Fernandes, F. A., & Fernandes, A. H. B. M. (2008). Cálculo dos estoques de carbono sob diferentes condições de manejo. Embrapa Pantanal. Corumbá-Brazil 4p. (Comunicado técnico, 69).

  • Ferri, M. G. (1961). Caracterização das principais formações vegetais brasileiras e considerações sobre alguns problemas importantes de sua ecologia. Palestras V Curso Internacional de Pastagens. Apêndice. Instituto Interamericano de Ciências Agrícolas. Fundamentos de Manejo de Pastagens. Instituto Interamericano de Ciências Agrícolas. Department of Production Animals. São Paulo-Brazil. pp. 177–199.

  • Furtado, A. G., Silva, E. D., Anjos, L. A., & Rodrigues, K. F. (2003). Estabilidade e diversidade de uma comunidade de cerrado em Itirapina (SP) (p. 9). Relatório, Universidade de Campinas, Campinas.

    Google Scholar 

  • Grace, J., José, J. S., Meir, P., Miranda, H. S., & Montes, R. A. (2006). Productivity and carbon fluxes of tropical savannas. Journal of Biogeography, 33, 387–400.

    Article  Google Scholar 

  • Heringer, E. P., Barroso, G. M., Rizzo, J. A., & Rizzini, C. T. (1977). A Flora do Cerrado. In M. G. Ferri (Ed.), IV Simpósio sobre o Cerrado (pp. 211–232). São Paulo, Brazil: Editora Universidade de São Paulo.

  • Higuchi, N., & Carvalho Jr., J. A. (1994) Fitomassa e conteúdo de carbono de espécies arbóreas da Amazônia. In: Annals of the Seminário emissão x sequestro de CO2 – uma nova oportunidade de negócios para o Brasil. Rio de Janeiro. CVRD. Rio de Janeiro – Brazil. pp. 125–145.

  • Higuchi, N., Santos, J., Ribeiro, R. J., Minette, L., & Biot, Y. (1998). Biomassa da parte aérea da vegetação de floresta tropical úmida de terra-firme da Amazônia Brasileira. Acta Amazônica, 28, 153–165.

    Article  Google Scholar 

  • Hoffmann, W. A., & Moreira, A. G. (2002). The role of fire on population dynamics of woody plants. In P. S. Oliveira & R. J. Marquis (Eds.), The Cerrados of Brazil: Ecology and natural history of a Neotropical savanna (p. 367). Columbia University Press.

    Google Scholar 

  • House, J. I., & Hall, D. O. (2001). Productivity of tropical savannas and grasslands. In J. Roy (Ed.), Terrestrial Global Productivity. Physiological Ecology (pp. 363–400). Academic Press.

    Chapter  Google Scholar 

  • IB - Instituto de Botânica. (2014). Retrieved May 15, 2015 from https://www.infraestruturameioambiente.sp.gov.br/institutodebotanica/mogi-guacu/

  • IBGE – Instituto Brasileiro de Geografia e Estatística. (2004). IBGE/MMA, Mapa de Biomas do Brasil - Primeira Aproximação. [Brazil Biomes Map - First Approach] Retrieved December 1, 2020 from https://brasilemsintese.ibge.gov.br/territorio.html

  • ICMBio - Instituto Chico Mendes de Conservação da Biodiversidade. (2020). Cerrado. Retrieved June 25, 2020 from https://www.icmbio.gov.br/portal/unidadesdeconservacao/biomas-brasileiros/cerrado

  • IPCC. (2006). 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme. In H. S. Eggleston, L. Buendia, K. Miwa, T. Ngara & K. Tanabe (Eds.). Published: Institute for Global Environmental Strategies (IGES), Hayama, Japan. v.4. Agriculture, Forestry and Other Land Use.

  • Klink, C. A., & Machado, R. B. A. (2005). Conservação do cerrado brasileiro. Belo Horizonte. Megadiversidade, 1(1), 148–155.

    Google Scholar 

  • Lacerda, J. S., Couto, H. T. Z., Hirota, M. M., Pasishnyk, N., & Polizel, J. L. (2009). Estimativa da biomassa e carbono em áreas restauradas com plantio de essências nativas. Centro de Métodos Quantitativos do Depto. de Ciências Florestais - METRUM, ESALQ, Universidade de São Paulo. Piracicaba-Brazil. n.5. 23 p.

  • Lal, R., Kimble, J., & Stewart, B. A. (1995). World soils as a source or sink for radiatively-active gases. In R. Lal, J. Kimble, E. Levine, & B. A. Stewart (Eds.), Soil management and greenhouse effect (pp. 1–7). CRC Lewis Publishers.

    Google Scholar 

  • Liang, J., Crowther, T. W., Picard, N., Wiser, S., Zhou, M., Alberti, G., & Reich, P. B. (2016). Positive biodiversity-productivity relationship predominant in global forests. Science, 354(6309), 196–208.

    Article  CAS  Google Scholar 

  • Mack, R. N., Simberloff, D., Lonsdale, W. M., Evans, H., Clout, M., & Bazzaz, F. A. (2000). Biotic invasions: Causes, epidemiology, global consequences, and control. Ecological Applications, 10(3), 689–710.

    Article  Google Scholar 

  • Magurran, A. (1988). Ecological diversity and its measurement (p. 177p). British Library. London-UK.

    Book  Google Scholar 

  • Mantovani, W., & Martins, F. R. (1993). Florística do cerrado na reserva biológica de Moji Guaçu, SP. Acta Botanica Brasilica, 7(1), 33–70.

    Article  Google Scholar 

  • MapBiomas. (2021). Estatísticas. Coleção 5 (1985–2019). Retrieved August 8, 2021 from https://mapbiomas.org/estatisticas

  • Marimon, B. H., Jr., & Haridasan, M. (2005). Comparação da vegetação arbórea e características edáficas de um cerradão e um cerrado sensu stricto em áreas adjacentes sobre solo distrófico no leste do Mato Grosso, Brasil. Acta Botânica Brasilica, 19, 913–926.

    Article  Google Scholar 

  • Matos, P. F. (2006). A consolidação da modernização agrícola no Cerrado e os impactos ambientais. Revista Mediação, 1(1), 66–81.

    Google Scholar 

  • Matthews, H. D., Graham, T. L., Keverian, S., Lamontagne, C., Seto, D., & Smith, T. J. (2014). National contributions to observed global warming. Environmental Research Letter, 9(1), 1–9.

    Article  Google Scholar 

  • Miranda, S. C. (2012). Variação espacial e temporal da biomassa vegetal em áreas de Cerrado. PhD. Thesis (Doctorate in Ecology) – University of Brasília, Brasília. 142p.

  • Miranda, S. C., Bustamante, M., Palace, M., Hagen, S., Keller, M., & Ferreira, L. G. (2014). Regional variations in biomass distribution in Brazilian savanna woodland. Biotropica, 46(2), 125–138.

    Article  Google Scholar 

  • Mistry, J. (2000). World Savannas. Ecology and human use (p. 352). Harlow: Prentice Hall, London.

  • MMA - Ministério do Meio Ambiente. (2009). Relatório técnico de monitoramento do desmatamento no bioma cerrado, 2002 a 2008: Dados Revisados. (acordo de cooperação técnica MMA/IBAMA/PNUD) 71 p.

  • MMA - Ministério do Meio Ambiente. (2017). Brazil’s forest reference emission level for reducing emissions from deforestation in the cerrado biome for results-based payments for REDD+ under the United Nations framework convention on climate change. MMA: Brasília - Brazil. 76 p.

  • MMA - Ministério do Meio Ambiente. (2020). O Bioma Cerrado. Retrieved April 21, 2020 from https://www.mma.gov.br/biomas/cerrado

  • Morais, V. A., Scolforo, J. R. S., Silva, C. A., de Mello, J. M., Gomide, L. R., & de Oliveira, A. D. (2013). Carbon and biomass stocks in a fragment of cerradão in Minas Gerais state, Brazil. Cerne, 19(2), 237–245.

    Article  Google Scholar 

  • Morais, V. A., Santos, C. A., Mello, J. M., Dadid, H. C., Araújo, E. J. G., & Scolforo, J. R. S. (2017). Spatial and vertical distribution of litter and belowground carbon in a Brazilian cerrado vegetation. Cerne, 23(1), 43–52. https://doi.org/10.1590/01047760201723012247

    Article  Google Scholar 

  • Mueller-Dombois, D., & Ellenberg, H. (1974). Aims and methods of vegetation ecology (p. 547). New York-USA: Wiley.

    Google Scholar 

  • Myers, N., Mittermeier, R. A., Mittermeier, C. G., Fonseca, G. A. B., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403, 853–858.

    Article  CAS  Google Scholar 

  • Odipo, V. O., Nickless, A., Berger, C., Baade, J., Urbazaev, M., Walther, C., & Schmullius, C. (2016). Assessment of aboveground woody biomass dynamics using terrestrial laser scanner and l-band ALOS PALSAR data in south African savanna. Forests, 7(12), 294. https://doi.org/10.3390/f7120294

    Article  Google Scholar 

  • Oliveira-Filho, A. T., & Ratter, J. A. (2002). Vegetation physiognomies and woody flora of the Cerrado biome. In P. S. Oliveira & R. J. Marquis (Eds.), The cerrados of Brazil: Ecology and natural history of a neotropical savanna (pp. 91–120). Columbia University Press.

    Chapter  Google Scholar 

  • Ottmar, R. D., Vihnanek, R. E., Miranda, H. S., Sato, M. N., & Andrade, S. M. A. (2001). Séries de Estéreo-fotografias para quantificar a biomassa da vegetação do cerrado do Brasil central – volume I. Gen. Tech. Rep. PNW-GTR-519. U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, Portland, OR - USA. 87 p.

  • Pearson, T. R. H., Brown, S., Murray, L., & Sidman, G. (2017). Greenhouse gas emissions from tropical forest degradation: An underestimated source. Carbon Balance and Management, 12, 3.  https://doi.org/10.1186/s13021-017-0072-2

  • Pinheiro, E. S. (2008). Análises ecológicas e sensoriamento remoto aplicados à estimativa de fitomassa de cerrado na Estação Ecológica de Assis, SP. PhD. Thesis. Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, SP - Brazil. 192 p.

  • Prentice, I. C., Farquhar, G. D., Fasham, M. J. R., Goulden, M. L., Heimann, M., Jaramillo, V. J., Kheshgi, H. S., Le Quéré, C., Scholes, R. J., & Wallace, D. W. R. (2001). The carbon cycle and atmospheric carbon dioxide. In J. T. Houghton, Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell, & C. A. Johnson (Eds.), Climate Change (pp. 185–237). The scientific basis. contribution of working group I to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press.

    Google Scholar 

  • PRODES Cerrado Program. (2020). Desmatamento - TerraBrasilis. Retrieved December 15, 2020 from http://terrabrasilis.dpi.inpe.br/app/dashboard/deforestation/biomes/cerrado/increments

  • Ratter, J. A., Bridgewater, S., Atkinson, R., & Ribeiro, J. F. (1996). Analysis of the floristic composition of the Brazilian cerrado vegetation II: Comparison of the woody vegetation of 98 areas. Edinburgh Journal of Botany, 53(2), 153–180.

  • Ratter, J. A., Ribeiro, J. F., & Bridgewater, S. (1997). The Brazilian cerrado vegetation and threats to its biodiversity. Annals of Botany, 80, 223–230.

  • Ribeiro, S. C., Fehrmann, L., Soares, C. P. B., Jacovine, L. A. G., Kleinn, C., & Gaspar, R. O. (2011). Above and belowground biomass in a Brazilian Cerrado. Forest Ecology and Management., 262(3), 491–499. https://doi.org/10.1016/j.foreco.2011.04.017

    Article  Google Scholar 

  • Ribeiro, J. F., & Walter, B. M. T. (2008). As principais fitofisionomias do bioma Cerrado. In S. M. Sano, S. P. Almeida, & J. F. Ribeiro (Eds.), Cerrado: Ecologia e flora (pp. 153–212). Embrapa Cerrados.

    Google Scholar 

  • Rizzini, C. T. (1997). Tratado de Fitogeografia do Brasil: Aspectos ecológicos, sociológicos e florísticos (p. 747). Ambito Cultural Edições Ltda., Rio de Janeiro, Brazil.

  • Robinson, R. S. (2014). Purposive Sampling. In A. C. Michalos (Ed.) Encyclopedia of quality of life and well-being research. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0753-5_2337

  • Roitman, I., Bustamante, M. M. C., Haidar, R. F., Shimbo, J. Z., Abdala, G. C., Eiten, G., Fagg, C. W., Felfili, M. C., Felfili, J. M., Jacobson, T. K. B., Lindoso, G. S., Keller, M., Lenza, E., Miranda, S. C., Pinto, J. R. R., Rodrigues, A. A., Delitti, W. B. C., Roitman, P., & Sampaio, J. M. (2018) Optimizing biomass estimates of savanna woodland at different spatial scales in the Brazilian Cerrado: Re-evaluating allometric equations and environmental influences. PLoS ONE 13(8), e0196742. https://doi.org/10.1371/journal.pone.0196742

  • Scurlock, J. M. O., & Hall, D. O. (1998). The global carbon sink: A grassland perspective. Global Change Biology, 4, 229–233.

    Article  Google Scholar 

  • Silveira, P., Koehler, H. S., Sanquetta, C. R., & Arce, J. E. (2008). O estado da arte na estimativa de biomassa e carbono em formações florestais. Floresta, 38(1), 185–206.

    Article  Google Scholar 

  • Teixeira, P. A., Donagemma, G. K., Fontana, A., & Teixeira, W. G. (2017). Manual de métodos de análise de solo. 3rd (Ed.) EMBRAPA. Brasília, DF - Brazil. 574 p.

  • Terra, M. C. N. S., Santos, R. M., Prado Jr., J. A., Mello, J. M., Scolforo, J. R. S., Fontes, M. A. L., Schiavini, I., Reis, A. A., Bueno, I. T., Magnago, L. F. S., & Steege, H. (2018). Water availability drives gradients of tree diversity, structure and functional traits in the Atlantic–Cerrado–Caatinga transition, Brazil, Journal of Plant Ecology, 11(6), 803–814. https://doi.org/10.1093/jpe/rty017

  • Viergever, K. M., Woodhouse, I. H., & Stuart, N. (2008). Monitoring the world’s savanna biomass by earth observation. Scottish Geographical Journal, 124(2–3), 218–225.

    Article  Google Scholar 

  • Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science, 37, 29–38.

    Article  CAS  Google Scholar 

  • Wright, J. L., Bomfim, B., Wong, C. I., Marimon-Jr, B. H., Marimon, B. S., & Silva, L. C. R. (2020). Sixteen hundred years of increasing tree cover prior to modern deforestation in Southern Amazon and Central Brazilian savannas. Global Change Biology, 27(1), 136–150. https://doi.org/10.1111/gcb.15382

    Article  CAS  Google Scholar 

  • Zimbres, B., Shimbo, J., Bustamante, M., Levick, S., Miranda, S., Roitman, I., Silvério, D., Gomes. L., Fagg, C., & Alencar, A. (2020). Savanna vegetation structure in the Brazilian cerrado allows for the accurate estimation of aboveground biomass using terrestrial laser scanning. Forest Ecology and Management, v.458. https://doi.org/10.1016/j.foreco.2019.117798

Download references

Acknowledgements

The authors are grateful for the support received from the Directors of the Biological Reserve of Mogi Guaçu and the Institute of Botany of the State of São Paulo in the persons of João del Giudice Neto and Marcos Mecca Pinto. We especially thank Mr. Alcebíades Nogueira for his tireless help throughout the execution of this study in the field. We are also grateful for the support given by Dr. Jefferson Lordello Polizel and the assistance received from Eng. MSc. Mariane M. Rodrigues and undergraduate students Eduardo Molina Rodriguez and Alessandra Monteiro Correr. We are grateful for the welcome of Profs. Dr. Luis Reynaldo F. Aleoni and Dr. Álvaro Pires da Silva (in memoriam) in their laboratories and for all the teachings.

Funding

Ana Paula de Oliveira Risante received a scholarship from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – CAPES, Educational Ministry of Education of Brazil [PROEX Program Process Number: 1510333] during the development of this research.

Author information

Authors and Affiliations

Authors

Contributions

Ciro Abbud Righi and Hilton Thadeu Zarate do Couto thought and designed the field experiment with its replications and analyses. Ciro Abbud Righi guided the field collections carried out and processed and analyzed by Ana Paula de Oliveira Risante with the help of Hilton Thadeu Zarate do Couto, which performed the statistical analyses and validated the results. Ana Paula de Oliveira Risante helped in data acquisition and organization and in the construction of graphs and tables. Ana Paula Contador Packer contributed to field assessments as well as to laboratory analyses in determining carbon contents. All authors contributed to the analysis, writing, and revision of the article in its current form.

Corresponding author

Correspondence to Ciro Abbud Righi.

Ethics declarations

Ethics approval

All authors have read, understood, and have complied as applicable with the statement on “Ethical responsibilities of Authors” as found in the Instructions for Authors and are aware that with minor exceptions, no changes can be made to authorship once the paper is submitted.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 36 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Righi, C.A., de Oliveira Risante, A.P., Packer, A.P. et al. Biodiversity and biomass relationships in a cerrado stricto sensu in Southeastern Brazil. Environ Monit Assess 195, 492 (2023). https://doi.org/10.1007/s10661-023-11051-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11051-w

Keywords

Navigation