Skip to main content

Advertisement

Log in

Characterization of hydrocarbons in aerosols at a Mediterranean city with a high density of palm groves

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Samples of PM1 and PM10 were collected for 1 year at an urban background station in the city of Elche (southeastern Spain) and analyzed to determine the content of n-alkanes and polycyclic aromatic hydrocarbons (PAHs). A few samples were also gathered at a second sampling point established at one of the several palm tree gardens of the city in order to evaluate the influence of biogenic emissions on the urban levels of n-alkanes. Diagnostic parameters obtained for aliphatic hydrocarbons (carbon maximum number (C max), carbon preference index (CPI), and wax n-alkane content (%WNA)) revealed a higher contribution of biogenic n-alkanes in PM10 than in PM1. Moreover, the values of %WNA indicated that the levels of n-alkanes in Elche were more affected by emissions from terrestrial vegetation than in other urban areas, particularly in the palm tree grove location (%WNA = 29 for PM10). PAH diagnostic ratios pointed to traffic as the main anthropogenic source of hydrocarbons in Elche, with predominance of diesel versus gasoline vehicle emissions. The average levels of total PAHs (~1 ng m−3) were noticeably lower than the values registered at other urban areas in Europe, most likely because emissions from other sources are scarce. Both aliphatic and aromatic hydrocarbons showed higher levels in the cold season due to the lower atmospheric dispersion conditions, the increase in traffic exhaust emissions, and the lower ambient temperatures that reduce the evaporation of semivolatile species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alves, C., Vicente, A., Pio, C., Kiss, G., Hoffer, A., Decesari, S., Prevôt, A. S. H., Minguillón, M. C., Querol, X., Hillamo, R., Spindler, G., & Swietlicki, E. (2012). Organic compounds in aerosols from selected European sites—biogenic versus anthropogenic sources. Atmospheric Environment, 59, 243–255.

    Article  CAS  Google Scholar 

  • Alves, C., Nunes, T., Vicente, A., Goncalves, C., Evtyugina, M., Marques, T., Pio, C., & Bate-Epey, F. (2014). Speciation of organic compounds in aerosols from urban background sites in the winter season. Atmospheric Research, 150, 57–68.

    Article  CAS  Google Scholar 

  • Barrero, M. A., & Cantón, L. (2007). Organic composition of atmospheric urban aerosol: variations and sources of aliphatic and polycyclic aromatic hydrocarbons. Atmospheric Research, 85, 288–299.

    Article  Google Scholar 

  • Bi, X., Sheng, G., Peng, P., Chen, Y., Zhang, Z., & Fu, J. (2003). Distribution of particulate- and vapor-phase n-alkanes and polycyclic aromatic hydrocarbons in urban atmosphere of Guangzhou, China. Atmospheric Environment, 37, 289–298.

    Article  CAS  Google Scholar 

  • Burkart, K., Nehls, I., Win, T., & Endlicher, W. (2013). The carcinogenic risk and variability of particulate-bound polycyclic aromatic hydrocarbons with consideration of meteorological conditions. Air Quality Atmosphere and Health, 6, 27–38.

    Article  CAS  Google Scholar 

  • Caballero, S., Esclapez, R., Galindo, N., Mantilla, E., & Crespo, J. (2012). Use of a passive sampling network for the determination of urban NO2 spatiotemporal variations. Atmospheric Environment, 63, 148–155.

    Article  CAS  Google Scholar 

  • Callén, M. S., de la Cruz, M. T., López, J. M., Murillo, R., Navarro, M. V., & Mastral, A. M. (2008). Some inferences on the mechanism of atmospheric gas/particle partitioning of polycyclic aromatic hydrocarbons (PAH) at Zaragoza (Spain). Chemosphere, 73, 1357–1365.

    Article  Google Scholar 

  • Chan, T. W., Meloche, E., Kubsh, J., Rosenblatt, D., Brezny, R., & Rideout, G. (2013). Impact of ambient temperature on gaseous and particle emissions from a direct injection gasoline vehicle and its implications on particle filtration. SAE International Journal of Fuels Lubricants, 6, 350–371.

    Article  CAS  Google Scholar 

  • Chow, J. C., & Watson, J. G. (2007). Review of measurement methods and compositions for ultrafine particles. Aerosol Air Quality Research, 7, 121–173.

    CAS  Google Scholar 

  • Delgado-Saborit, J. M., Stark, C., & Harrison, R. M. (2011). Carcinogenic potential, levels and sources of polycyclic aromatic hydrocarbon mixtures in indoor and outdoor environments and their implications for air quality standards. Environment International, 37, 383–392.

    Article  CAS  Google Scholar 

  • Fox, J. R., Cox, D. P., Drury, B. E., Gould, T. R., Kavanagh, T. J., Paulsen, M. H., Sheppard, L., Simpson, C. D., Stewart, J. A., Larson, T. V., & Kaufman, J. D. (2015). Chemical characterization and in vitro toxicity of diesel exhaust particulate matter generated under varying conditions. Air Quality, Atmosphere and Health, 5, 507–519.

    Article  Google Scholar 

  • Galindo, N., Varea, M., Gil-Moltó, J., Yubero, E., & Nicolás, J. (2011). The influence of meteorology on particulate matter concentrations at an urban Mediterranean location. Water, Air, & Soil Pollution, 215, 365–372.

    Article  CAS  Google Scholar 

  • Galindo, N., Gil-Moltó, J., Varea, M., Chofre, C., & Yubero, E. (2013). Seasonal and interannual trends in PM levels and associated inorganic ions in southeastern Spain. Microchemical Journal, 110, 81–88.

    Article  CAS  Google Scholar 

  • Gil-Moltó, J., Varea, M., Galindo, N., & Crespo, J. (2009). Application of an automatic thermal desorption-gas chromatography-mass spectrometry system for the analysis of polycyclic aromatic hydrocarbons in airborne particulate matter. Journal of Chromatography A, 1216, 1285–1289.

    Article  Google Scholar 

  • Gogou, A., Stratigakis, N., Kanakidou, M., & Stephanou, E. G. (1996). Fine organic aerosols in eastern Mediterranean: components source reconciliation by using molecular markers and atmospheric back trajectories. Organic Geochemistry, 25, 79–96.

    Article  CAS  Google Scholar 

  • Górka, M., Rybicki, M., Simoneit, B. R. T., & Marynowski, L. (2014). Determination of multiple organic matter sources in aerosol PM10 from Wrocław, Poland using molecular and stable carbon isotope compositions. Atmospheric Environment, 89, 739–748.

    Article  Google Scholar 

  • He, J., Zielinska, B., & Balasubramanian, R. (2010). Composition of semi-volatile organic compounds in the urban atmosphere of Singapore: influence of biomass burning. Atmospheric Chemistry and Physics, 10, 11401–114013.

    Article  CAS  Google Scholar 

  • Hoek, G., Krishnan, R. M., Beelen, R., Peters, A., Ostro, B., Brunekreef, B., & Kaufman, J. D. (2013). Long-term air pollution exposure and cardio-respiratory mortality: a review. Environmental Health, 12, 43.

    Article  CAS  Google Scholar 

  • IARC (1998). Polynuclear aromatic compounds, Part 1. Chemical, environmental and experimental data. In IARC Monographs on the evaluation of carcinogenic risks to humans, vol. 32. Lyon: International Agency for Research on Cancer (IARC).

  • Karanasiou, A. A., Sitaras, I. E., Siskos, P. A., & Eleftheriadis, K. (2007). Size distribution and sources of trace metals and n-alkanes in the Athens urban aerosol during summer. Atmospheric Environment, 41, 2368–2381.

    Article  CAS  Google Scholar 

  • Kavouras, I. G., Koutrakis, P., Tsapakis, M., Lagoudaki, E., Stephanou, E. G., Von Baer, D., & Oyola, P. (2001). Source apportionment of urban particulate aliphatic and polynuclear aromatic hydrocarbons (PAHs) using multivariate methods. Environmental Science & Technology, 35, 2288–2294.

    Article  CAS  Google Scholar 

  • Kavouras, I. G., & Stephanou, E. G. (2002). Particle size distribution of organic primary and secondary aerosol constituents in urban, background marine, and forest atmosphere. Journal of Geophysical Research, 107, D8.

    Article  Google Scholar 

  • Kelly, F. J., & Fussell, J. C. (2012). Size, source and chemical composition as determinants of toxicity attributable to ambient particulate matter. Atmospheric Environment, 60, 504–526.

    Article  CAS  Google Scholar 

  • Ladji, R., Yassaa, N., Balducci, C., & Cecinato, A. (2014). Particle size distribution of n-alkanes and polycyclic aromatic hydrocarbons (PAHs) in urban and industrial aerosol of Algiers, Algeria. Environmental Science and Pollution Research, 21, 1819–1832.

    Article  CAS  Google Scholar 

  • Mazurek, M. A., Cass, G. R., & Simoneit, B. R. T. (1989). Interpretation of high-resolution gas chromatography and high-resolution gas chromatography/mass spectrometry data acquired from atmospheric organic aerosol samples. Aerosol Science and Technology, 10, 408–420.

    Article  CAS  Google Scholar 

  • Mirante, F., Alves, C., Pio, C., Pindado, O., Perez, R., Revuelta, M. A., & Artiñano, B. (2013). Organic composition of size segregated atmospheric particulate matter, during summer and winter sampling campaigns at representative sites in Madrid, Spain. Atmospheric Research, 132–133, 345–361.

    Article  Google Scholar 

  • Moussaoui, Y., Balducci, C., Cecinato, A., & Meklati, B. Y. (2013). Atmospheric particulate organic matter at urban and forest sites of Northern Algeria. Urban Climate, 4, 85–101.

    Article  Google Scholar 

  • Nisbet, I. C. T., & LaGoy, P. K. (1992). Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regulatory Toxicology and Pharmacology, 16, 290–300.

    Article  CAS  Google Scholar 

  • O'Connor, G. T., Neas, L., Vaughn, B., Kattan, M., Mitchell, H., Crain, E. F., Evans 3rd, R., Gruchalla, R., Morgan, W., Stout, J., Adams, G. K., & Lippmann, M. (2008). Acute respiratory health effects of air pollution on children with asthma in US inner cities. Journal of Allergy and Clinical Immunology, 121, 1133–1139.

    Article  Google Scholar 

  • Perrone, M. G., Carbone, C., Faedo, D., Ferrero, L., Maggioni, A., Sangiorgi, G., & Bolzacchini, E. (2014). Exhaust emissions of polycyclic aromatic hydrocarbons, n-alkanes and phenols from vehicles coming within different European classes. Atmospheric Environment, 82, 391–400.

    Article  CAS  Google Scholar 

  • Pietrogrande, M. C., Abbaszade, G., Schnelle-Kreis, J., Bacco, D., Mercuriali, M., & Zimmermann, R. (2011). Seasonal variation and source estimation of organic compounds in urban aerosol of Augsburg, Germany. Environmental Pollution, 159, 1861–1868.

    Article  CAS  Google Scholar 

  • Richter, H., & Howard, J. B. (2000). Formation of polycyclic aromatic hydrocarbons and their growth to soot—a review of chemical reaction pathways. Progress in Energy and Combustion Science, 26, 565–608.

    Article  CAS  Google Scholar 

  • Rogge, W. F., Hildemann, L. M., Mazurek, M. A., Cass, G. R., & Simoneit, B. R. T. (1993). Particulate abrasion products from leaf surfaces of urban plants. Environmental Science & Technology, 27, 2700–2711.

    Article  CAS  Google Scholar 

  • Salwa, K. H., & Khoder, M. I. (2012). Gas–particle concentration, distribution, and health risk assessment of polycyclic aromatic hydrocarbons at a traffic area of Giza, Egypt. Environmental Monitoring and Assessment, 184, 3593–3612.

    Article  Google Scholar 

  • Schauer, J. J., Christensen, C. G., Kittelson, D. B., Johnson, J. P., & Watts, W. F. (2008). Impact of ambient temperatures and driving conditions on the chemical composition of particulate matter emissions from non-smoking gasoline-powered motor vehicles. Aerosol Science and Technology, 42, 210–223.

    Article  CAS  Google Scholar 

  • Schnelle-Kreis, J., Sklorz, M., Peters, A., Cyrys, J., & Zimmermann, R. (2005). Analysis of particle-associated semi-volatile aromatic and aliphatic hydrocarbons in urban particulate matter on a daily basis. Atmospheric Environment, 39, 7702–7714.

    CAS  Google Scholar 

  • Simoneit, B. R. T. (1999). A review of biomarker compounds as source indicators and tracers for air pollution. Environmental Science and Pollution Research, 6, 159–169.

    Article  CAS  Google Scholar 

  • Tang, X. L., Bi, X. H., Sheng, G. Y., Tan, J. H., & Fu, J. M. (2006). Seasonal variation of the particle size distribution of n-alkanes and polycyclic aromatic hydrocarbons (PAHs) in urban aerosol of Guangzhou, China. Environmental Monitoring and Assessment, 117, 193–213.

    Article  CAS  Google Scholar 

  • Tobiszewski, M., & Namieśnik, J. (2012). PAH diagnostic ratios for the identification of pollution emission sources. Environmental Pollution, 162, 110–119.

    Article  CAS  Google Scholar 

  • Van Drooge, B. L., Crusack, M., Reche, C., Mohr, C., Alastuey, A., Querol, X., Prevot, A., Day, D. A., Jimenez, J. L., & Grimalt, J. O. (2012). Molecular marker characterization of the organic composition of submicron aerosols from Mediterranean urban and rural environments under contrasting meteorological conditions. Atmospheric Environment, 61, 482–489.

    Article  CAS  Google Scholar 

  • Varea, M., Galindo, N., Gil-Moltó, J., Pastor, C., & Crespo, J. (2011). Particle-bound polycyclic aromatic hydrocarbons in an urban, industrial and rural area in the western Mediterranean. Journal of Environmental Monitoring, 13, 2471–2476.

    Article  CAS  Google Scholar 

  • Yadav, S., Tandon, A., & Attri, A. K. (2013). Monthly and seasonal variations in aerosol associated n-alkane profiles in relation to meteorological parameters in New Delhi, India. Aerosol and Air Quality Research, 13, 287–300.

    CAS  Google Scholar 

  • Yassaa, N., Meklati, B. Y., Cecinato, A., & Marino, F. (2001). Particulate n-alkanes, n-alkanoic acids and polycyclic aromatic hydrocarbons in the atmosphere of Algiers City Area. Atmospheric Environment, 35, 1843–1851.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Air Quality Surveillance Network of the Valencian Community Regional Government and the Oficina Munipal de Tráfico de Elche for supplying data. This work was supported by the Ministerio de Educación y Ciencia under the CGL2007-63326 (DAPASE) project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Gil-Moltó.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chofre, C., Gil-Moltó, J., Galindo, N. et al. Characterization of hydrocarbons in aerosols at a Mediterranean city with a high density of palm groves. Environ Monit Assess 188, 509 (2016). https://doi.org/10.1007/s10661-016-5517-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-016-5517-7

Keywords

Navigation